We present the first forward-rapidity measurements of elliptic anisotropy of open-heavy-flavor muons at the BNL Relativistic Heavy Ion Collider. The measurements are based on data samples of Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The measurements are performed in the pseudorapidity range $1.2<|\eta|<2$ and cover transverse momenta $1<p_T<4$~GeV/$c$. The elliptic flow of charged hadrons as a function of transverse momentum is also measured in the same kinematic range. We observe significant elliptic flow for both charged hadrons and heavy-flavor muons. The results show clear mass ordering of elliptic flow of light- and heavy-flavor particles. The magnitude of the measured $v_2$ is comparable to that in the midrapidity region. This indicates that there is no strong longitudinal dependence in the quark-gluon-plasma evolution between midrapidity and the rapidity range of this measurement at $\sqrt{s_{_{NN}}}=200$~GeV.
Lastgap $v_2$
Hadron-Muon Ratio at $1.2 < |\eta| < 2.0$
HF Fraction at $1.2 < |\eta| < 2.0$ Top Tuned Slim
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run~2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/ψ$ or $η_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is 10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/Λ$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.
The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
The modified energy correlation function, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
$Z$ boson transverse momentum, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
A search for the pair-production of vector-like quarks optimized for decays into a $Z$ boson and a third-generation Standard Model quark is presented, using the full Run 2 dataset corresponding to 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV, collected in 2015-2018 with the ATLAS detector at the Large Hadron Collider. The targeted final state is characterized by the presence of a $Z$ boson with high transverse momentum, reconstructed from a pair of same-flavour leptons with opposite-sign charges, as well as by the presence of $b$-tagged jets and high-transverse-momentum large-radius jets reconstructed from calibrated smaller-radius jets. Events with exactly two or at least three leptons are used, which are further categorized by the presence of boosted $W$, $Z$, and Higgs bosons and top quarks. The categorization is performed using a neural-network-based boosted object tagger to enhance the sensitivity to signal relative to the background. No significant excess above the background expectation is observed and exclusion limits at 95% confidence level are set on the masses of the vector-like partners $T$ and $B$ of the top and bottom quarks, respectively. In the singlet model, the limits allow $m_T > 1.27$ TeV and $m_B > 1.20$ TeV. In the doublet model, allowed masses are $m_T > 1.46$ TeV and $m_B >1.32$ TeV. In the case of 100% branching ratio for $T\rightarrow Zt$ and 100% branching ratio for $B\rightarrow Zb$, the limits allow $m_T > 1.60$ TeV and $m_B > 1.42$ TeV, respectively.
Expected and observed lower limits on B masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.
Expected and observed lower limits on T masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.
Expected and observed combined limits at 95% CL on the production cross-section of vector-like T for 100% $T\rightarrow Zt$.
Many extensions of the Standard Model, including those with dark matter particles, propose new mediator particles that decay into hadrons. This paper presents a search for such low mass narrow resonances decaying into hadrons using 140 fb$^{-1}$ of proton-proton collision data recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV. The resonances are searched for in the invariant mass spectrum of large-radius jets with two-pronged substructure that are recoiling against an energetic photon from initial state radiation, which is used as a trigger to circumvent limitations on the maximum data recording rate. This technique enables the search for boosted hadronically decaying resonances in the mass range 20-100 GeV hitherto unprobed by the ATLAS Collaboration. The observed data are found to agree with Standard Model predictions and 95% confidence level upper limits are set on the coupling of a hypothetical new spin-1 $Z'$ resonance with Standard Model quarks as a function of the assumed $Z'$-boson mass in the range between 20 and 200 GeV.
Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.
Invariant mass $m_{J}$ of the resonance candidates in the region defined with forward photon $\eta_{\gamma} > 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.
Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and an anti-tagged large-$R$ jetafter the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.
The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.
Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015-2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.
This is the HEPData space for the ATLAS monojet full Run 2 analysis. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-06/ The full statistical likelihood is provided for this analysis. It can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <br/><br/> <b>Post-fit $p_{\mathrm{T}}^{\mathrm{recoil}}$ distribution:</b> <ul> <li><a href="102093?version=3&table=HistogramCR1mu0b">CR1mu0b</a> <li><a href="102093?version=3&table=HistogramCR1e0b">CR1e0b</a> <li><a href="102093?version=3&table=HistogramCR1L1b">CR1L1b</a> <li><a href="102093?version=3&table=HistogramCR2mu">CR2mu</a> <li><a href="102093?version=3&table=HistogramCR2e">CR2e</a> <li><a href="102093?version=3&table=HistogramSR">SR</a> </ul> <b>Exclusion contours:</b> <ul> <li>Dark Matter axial-vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMA">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMA">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMA">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMA">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMA">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMA">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMA">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMA">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMA">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter pseudo-scalar mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMP">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMP">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMP">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMP">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMP">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMP">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMP">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMP">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMP">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMV">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMV">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMV">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMV">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMV">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMV">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMV">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMV">-2 $\sigma$ expected</a> </ul> <li>Dark Matter spin-dependent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSDneutron">observed</a> <li>Dark Matter spin-independent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSInucleon">observed</a> <li>Dark Matter WIMP annihilation rate: <a href="102093?version=3&table=ContourID">observed</a> <li>SUSY stop pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsTT_directCC">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_directCC">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_directCC">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_directCC">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_directCC">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_directCC">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_directCC">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_directCC">-2 $\sigma$ expected</a> </ul> <li>SUSY stop pair production (4-body decay): <ul> <li><a href="102093?version=3&table=Contourg_obsTT_bffN">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_bffN">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_bffN">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_bffN">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_bffN">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_bffN">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_bffN">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_bffN">-2 $\sigma$ expected</a> </ul> <li>SUSY sbottom pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsBB">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1BB">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1BB">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expBB">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1BB">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1BB">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2BB">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2BB">-2 $\sigma$ expected</a> </ul> <li>SUSY squark pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsSS">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1SS">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1SS">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expSS">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1SS">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1SS">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2SS">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2SS">-2 $\sigma$ expected</a> </ul> <li>Dark energy: <a href="102093?version=3&table=ContourDE">observed and expected</a> <li>ADD: <a href="102093?version=3&table=ContourADD">observed and expected</a> <li>Axion-like particles: <a href="102093?version=3&table=ContourALPs">observed and expected</a> </ul> <b>Impact of systematic uncertainties:</b> <a href="102093?version=3&table=Tablesystimpacts">Table</a><br/><br/> <b>Yields of exclusive regions:</b> <a href="102093?version=3&table=TableyieldsEM0">EM0</a> <a href="102093?version=3&table=TableyieldsEM1">EM1</a> <a href="102093?version=3&table=TableyieldsEM2">EM2</a> <a href="102093?version=3&table=TableyieldsEM3">EM3</a> <a href="102093?version=3&table=TableyieldsEM4">EM4</a> <a href="102093?version=3&table=TableyieldsEM5">EM5</a> <a href="102093?version=3&table=TableyieldsEM6">EM6</a> <a href="102093?version=3&table=TableyieldsEM7">EM7</a> <a href="102093?version=3&table=TableyieldsEM8">EM8</a> <a href="102093?version=3&table=TableyieldsEM9">EM9</a> <a href="102093?version=3&table=TableyieldsEM10">EM10</a> <a href="102093?version=3&table=TableyieldsEM11">EM11</a> <a href="102093?version=3&table=TableyieldsEM12">EM12</a><br/><br/> <b>Yields of inclusive regions:</b> <a href="102093?version=3&table=TableyieldsIM0">IM0</a> <a href="102093?version=3&table=TableyieldsIM1">IM1</a> <a href="102093?version=3&table=TableyieldsIM2">IM2</a> <a href="102093?version=3&table=TableyieldsIM3">IM3</a> <a href="102093?version=3&table=TableyieldsIM4">IM4</a> <a href="102093?version=3&table=TableyieldsIM5">IM5</a> <a href="102093?version=3&table=TableyieldsIM6">IM6</a> <a href="102093?version=3&table=TableyieldsIM7">IM7</a> <a href="102093?version=3&table=TableyieldsIM8">IM8</a> <a href="102093?version=3&table=TableyieldsIM9">IM9</a> <a href="102093?version=3&table=TableyieldsIM10">IM10</a> <a href="102093?version=3&table=TableyieldsIM11">IM11</a> <a href="102093?version=3&table=TableyieldsIM12">IM12</a><br/><br/> <b>Cutflows:</b><br/><br/> Signals filtered with a truth $E_\mathrm{T}^\mathrm{miss}$ cut at: <a href="102093?version=3&table=Tablecutflows150GeV">150 GeV</a> <a href="102093?version=3&table=Tablecutflows350GeV">350 GeV</a><br/><br/>
The measured $p_{\mathrm{T}}^{\mathrm{recoil}}$ distributions in the $W \rightarrow \mu \nu $ control region, compared with the background predictions as estimated after the simultaneous, binned background-only fit to the data in the control regions. The last bin of the distribution contains overflows.
The measured $p_{\mathrm{T}}^{\mathrm{recoil}}$ distributions in the $W \rightarrow e \nu$ control region, compared with the background predictions as estimated after the simultaneous, binned background-only fit to the data in the control regions. The last bin of the distribution contains overflows.
Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations.
Target asymmetry for $\pi^0\pi^0$ as a function of the polar angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\pi^0\pi^0$ invariant mass for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\phi^*$ angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
The associated production of Higgs and $W$ bosons via vector-boson fusion (VBF) is highly sensitive to the relative sign of the Higgs boson couplings to $W$ and $Z$ bosons. In this Letter, two searches for this process are presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the $W$ and $Z$ bosons to the Higgs boson, while the second targets Standard Model-like scenarios with same-sign couplings. Both analyses consider Higgs decays into a pair of $b$-quarks and $W$ decays with an electron or muon. The opposite-sign coupling hypothesis is excluded with significance much greater than $5\sigma$, and the observed (expected) upper limit set on the cross-section for VBF $WH$ production is 9.0 (8.7) times the Standard Model value.
Data compared to the background prediction in each region of the negative $\lambda_{WZ}$ analysis, before the fit to data. The signal prediction with $\kappa_{W} = +1$, $\kappa_{Z} = -1$ is shown overlaid. The predicted signal yield with $\kappa_{W} = +1$, $\kappa_{Z} = +1$ in SR$^{-}$ is 2.93 events, which is not shown in the figure. The shaded bands represent the total pre-fit uncertainty on the prediction. The uncertainty does not include the normalization of the main backgrounds, which is unconstrained in the fit.
Data compared to the background prediction in each region of the negative $\lambda_{WZ}$ analysis, after the fit to data. The fitted signal strength is $\hat{\mu} = -0.027$, corresponding to $-8$ events. This contribution is not shown in the figure. The predicted signal yield with $\kappa_{W} = +1$, $\kappa_{Z} = +1$ in SR$^{-}$ is 2.93 events, which is also not shown in the figure. The shaded bands represent the total post-fit uncertainty on the prediction.
Data compared to the SM prediction in each region of the positive \lam{} analysis, before the fit to data. The shaded bands represent the total pre-fit uncertainty on the prediction. The uncertainty does not include the normalization of the main backgrounds, which is unconstrained in the fit.
The multiplicities of positive and negative pions, kaons and unidentified hadrons produced in deep-inelastic scattering are measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the fraction of the virtual-photon energy transferred to the final-state hadron $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam of both electric charges and a liquid hydrogen target. These measurements cover the kinematic domain with photon virtuality $Q^2 > 1$ (GeV/$c)^2$, $0.004 < x < 0.4$, $0.1 < y < 0.7$ and $0.2 < z < 0.85$, in accordance with the kinematic domain used in earlier published COMPASS multiplicity measurements with an isoscalar target. The calculation of radiative corrections was improved by using the Monte Carlo generator DJANGOH, which results in up to 12% larger corrections in the low-$x$ region.
h+/h- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
pi+/pi- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
K+/K- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
The results of a search for the production of two scalar bosons in final states with two photons and two tau leptons are presented. The search considers both nonresonant production of a Higgs boson pair, HH, and resonant production via a new boson X which decays either to HH or to H and a new scalar Y. The analysis uses up to 138 fb$^{-1}$ of proton-proton collision data, recorded between 2016 and 2018 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV. No evidence for signal is found in the data. For the nonresonant production, the observed (expected) upper limit at 95% confidence level (CL) on the HH production cross section is set at 930 (740) fb, corresponding to 33 (26) times the standard model prediction. At 95% CL, HH production is observed (expected) to be excluded for values of $κ_λ$ outside the range between $-$12 ($-$9.4) and 17 (15). Observed (expected) upper limits at 95% CL for the XHH cross section are found to be within 160 to 2200 (200 to 1800) fb, depending on the mass of X. In the X $\to$ Y($γγ$)H($ττ$) search, the observed (expected) upper limits on the product of the production cross section and decay branching fractions vary between 0.059$-$1.2 fb (0.087$-$0.68 fb). For the X $\to$ Y($γγ$)H($ττ$) search the observed (expected) upper limits on the product of the production cross section and Y $to$ $γγ$ branching fraction vary between 0.69$-$15 fb (0.73$-$8.3 fb) in the low Y mass search, tightening constraints on the next-to-minimal supersymmetric standard model, and between 0.64$-$10 fb (0.70$-$7.6 fb) in the high Y mass search.
Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, as a function of the Higgs boson self-coupling strength modifier $\kappa_\lambda$. All Higgs boson couplings other than $\lambda$ are assumed to have the values predicted in the SM.
Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, for thirteen different BSM benchmark scenarios from [arXiv:1507.02245, arXiv:1806.05162] which consider different values of the couplings, $\kappa_\lambda$, $\kappa_t$, $c_{2g}$, $c_g$, and $c_2$ (defined in Table 1).
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new spin-0 particle $\mathrm{X}^{(0)}$ which decays to Higgs boson pairs, $\sigma(\mathrm{pp} \to \mathrm{X}^{(0)} \to \mathrm{HH})$, given for different values of $m_\mathrm{X}$ in the range 260-1000 GeV.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 1 b$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 2 b$-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 1 c$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
We report the first measurement of the azimuthal anisotropy of J$/\psi$ at forward rapidity ($1.2<|\eta|<2.2$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV at the Relativistic Heavy Ion Collider. The data were collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The second Fourier coefficient ($v_2$) of the azimuthal distribution of $J/\psi$ is determined as a function of the transverse momentum ($p_T$) using the event-plane method. The measurements were performed for several selections of collision centrality: 0%--50%, 10%--60%, and 10%-40%. We find that in all cases the values of $v_2(p_T)$, which quantify the elliptic flow of J$/\psi$, are consistent with zero. The results are consistent with measurements at midrapidity, indicating no significant elliptic flow of the J$/\psi$ within the quark-gluon-plasma medium at collision energies of $\sqrt{s_{_{NN}}}=200$ GeV.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 1], [1, 2], [2, 3], and [3, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--60% centrality with pT binned by [0, 0.5], [0.5, 1], [1, 5], and [0, 5] GeV/c.
JPSI v2 in Au+Au collisions as a function of pT (GeV/c) for 10%--40% centrality with pT binned by [0, 2], [2, 5], and [5, 10] GeV/c.
A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $\tau$ lepton. The pseudoscalar boson is assumed to have a mass of 2 GeV and to decay exclusively into a pair of photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $\tau$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.
The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the pseudoscalar into photons in events with MET > 200 GeV, for a VLL mass of 700 GeV and a pseudoscalar mass of 2 GeV, and a range of ctau values uniformly distributed between 0.01 and 0.1 m.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the signal region (SR). The last histogram bin contains all overflow events.
Distributions of the number of hits in the cluster (Nhits) for the CSC category in the signal region (SR). The last histogram bin contains all overflow events.
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.
Per-trigger jet-pair yield as a function of $\Delta\phi$ for selected $\pi^0$ trigger and charged-hadron-associated $p_T$ combinations (${{p_{T,\pi^0}} \otimes p_{T,h}}$) in Au$+$Au collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Integrated away-side $I_{AA}$ as a function of $p_T^h$. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies $\sqrt{s}$ = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb$^{-1}$. Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant WWZ production and ZH production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75$^{+0.34}_{-0.29}$ and 1.74$^{+0.71}_{-0.60}$ are measured for $\sqrt{s}$ = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for $\sqrt{s}$ = 13.6 TeV, thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03$^{+0.31}_{-0.28}$, with an observed (expected) significance of 4.5 (5.0) standard deviations.
Two-dimensional likelihood scan as a function of the individual WWZ and ZH signal strength parameters for the combined Run 2 and Run 3 datasets
One-dimensional likelihood scan as a function of the inclusive (WWZ + ZH) signal strength parameter for the combined Run 2 and Run 3 datasets
Comparison of the observed number of events to the SM-predicted number of events for each of the bins included in the fit for Run 2 (upper row) and Run 3 (lower row). The SM expectations are shown before performing the fit. The horizontal axis legend also indicates "WWZ-like" and "ZH-like" bins defined based on whether the WWZ BDT score is higher or lower than the ZH score.
A measurement of event-shape variables is presented, using a data sample produced in a special run with approximately one inelastic proton-proton collision per bunch crossing. The data were collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 64 $\mu$b$^{-1}$. A number of observables related to the overall distribution of charged particles in the collisions are corrected for detector effects and compared with simulations. Inclusive event-shape distributions, as well as differential distributions of event shapes as functions of charged-particle multiplicity, are studied. None of the models investigated is able to satisfactorily describe the data. Moreover, there are significant features common amongst all generator setups studied, particularly showing data being more isotropic than any of the simulations. Multidimensional unfolded distributions are provided, along with their correlations.
The unfolded charged particle multiplicity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
The unfolded charged particle invariant mass distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
The unfolded charged particle sphericity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.
The forward-backward asymmetry in Drell-Yan production and the effective leptonic electroweak mixing angle are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. The measurement uses both dimuon and dielectron events, and is performed as a function of the dilepton mass and rapidity. The unfolded angular coefficient $A_4$ is also extracted, as a function of the dilepton mass and rapidity. Using the CT18Z set of parton distribution functions, we obtain $\sin\theta^\ell_\text{eff}$ = 0.23152 $\pm$ 0.00031, where the uncertainty includes the experimental and theoretical contributions. The measured value agrees with the standard model fit result to global experimental data. This is the most precise $\sin\theta^\ell_\text{eff}$ measurement at a hadron collider, with a precision comparable to the results obtained at LEP and SLD.
Measured $A_4(|Y|,M))$ distribution for the combined Run 2 data.
Correlation coefficients for the $A_4(|Y|,M)$ values among different $|Y|-M$ bins. The $A_4(|Y|,M)$ values and total uncertainties are shown in Figure 8 in the paper.
The STAR Collaboration presents measurements of the semi-inclusive distribution of charged-particle jets recoiling from energetic direct-photon ($\gamma_{\rm dir}$) and neutral-pion ($\pi^{0}$) triggers in p+p and central Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ GeV over a broad kinematic range, for jet resolution parameters $R$=0.2 and 0.5. Medium-induced jet yield suppression is observed to be larger for $R$=0.2 than for 0.5, reflecting the angular range of jet energy redistribution due to quenching. The predictions of model calculations incorporating jet quenching are not fully consistent with the observations. These results provide new insight into the physical origins of jet quenching.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.5 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of pi^{0}+jet with E_{T,trig}= 11-15 GeV.
Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $\sigma_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Differential fiducial cross sections for pT of the Higgs boson
Example description
Differential fiducial cross sections for rapidity of the Higgs boson
This paper presents the measurement of charged-hadron and identified-hadron ($K^\mathrm{0}_\mathrm{S}$, $Λ$, $Ξ^\mathrm{-}$) yields in photo-nuclear collisions using 1.7 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb data collected in 2018 with the ATLAS detector at the Large Hadron Collider. Candidate photo-nuclear events are selected using a combination of tracking and calorimeter information, including the zero-degree calorimeter. The yields as a function of transverse momentum and rapidity are measured in these photo-nuclear collisions as a function of charged-particle multiplicity. These photo-nuclear results are compared with 0.1 $\mathrm{nb^{-1}}$ of $\sqrt{s_\mathrm{NN}} = 5.02$ TeV $p$+Pb data collected in 2016 by ATLAS using similar charged-particle multiplicity selections. These photo-nuclear measurements shed light on potential quark-gluon plasma formation in photo-nuclear collisions via observables sensitive to radial flow, enhanced baryon-to-meson ratios, and strangeness enhancement. The results are also compared with the Monte Carlo DPMJET-III generator and hydrodynamic calculations to test whether such photo-nuclear collisions may produce small droplets of quark-gluon plasma that flow collectively.
The multiplicity distribution (#it{N}_{ch}^{rec}) from Pb+Pb photo-nuclear collisions.
The multiplicity distribution (#it{N}_{ch}^{rec}) from p+Pb collisions.
The Charged-hadron yields as a function of pT in different y selections in Pb+Pb photo-nuclear collisions.
The production cross-section of high-mass $\tau$-lepton pairs is measured as a function of the dilepton visible invariant mass, using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider. The measurement agrees with the predictions of the Standard Model. A fit to the invariant mass distribution is performed as a function of $b$-jet multiplicity, to constrain the non-resonant production of new particles described by an effective field theory or in models containing leptoquarks or $Z'$ bosons that couple preferentially to third-generation fermions. The constraints on new particles improve on previous results, and the constraints on effective operators include those affecting the anomalous magnetic moment of the $\tau$-lepton.
The measured unfolded differential cross sections.
The combined covariance matrix for the differential cross-section distribution.
Statistical covariance matrix for the differential cross-section distribution.
A search is presented for a heavy scalar ($H$) or pseudo-scalar ($A$) predicted by the two-Higgs-doublet models, where the $H/A$ is produced in association with a top-quark pair ($t\bar{t}H/A$), and with the $H/A$ decaying into a $t\bar{t}$ pair. Events are selected requiring exactly one or two opposite-charge electrons or muons. Data-driven corrections are applied to improve the modelling of the $t\bar{t}$+jets background in the regime with high jet and $b$-jet multiplicities. These include a novel multi-dimensional kinematic reweighting based on a neural network trained using data and simulations. An $H/A$-mass parameterised graph neural network is trained to optimise the signal-to-background discrimination. In combination with the previous search performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross-section at 95% confidence level range between 14 fb and 5.0 fb for an $H/A$ with mass between 400 GeV and 1000 GeV, respectively. Assuming that both the $H$ and $A$ contribute to the $t\bar{t}t\bar{t}$ cross-section, $\tan\beta$ values below 1.7 or 0.7 are excluded for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a model predicting the pair production of a colour-octet scalar, with the scalar decaying into a $t\bar{t}$ pair.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 1L region with $\geq 10$ jets and four $b$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 2LOS region with $\geq8$ jets and $\geq 4$ $𝑏$-tagged jets. The fit is performed under the background-only hypothesis.
Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the validation region in the 1L region with $\geq 10$ jets. These regions do not enter the fit. The post-fit background prediction is obtained using the post-fit nuisance parameters from the background-only fit in the control and signal regions.
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb$^{-1}$. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $120 < p_{\mathrm{T,jet}} < 140$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
The energy-energy correlator distributions constructed with charged particles with $p_{\mathrm{T}} > 1$ GeV for energy weight $n=1$ and jet $p_{\mathrm{T}}$ selection $140 < p_{\mathrm{T,jet}} < 160$ GeV. The results are shown for different centrality bins in PbPb collisions and for pp collisions.
A search for nonresonant new physics phenomena in high-mass dilepton events produced in association with b-tagged jets is performed using proton-proton collision data collected in 2016$-$2018 by the CMS experiment at the CERN LHC, at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis considers two effective field theory models with dimension-six operators; involving four-fermion contact interactions between two leptons ($\ell\ell$, electrons or muons) and b or s quarks (bb$\ell\ell$ and bs$\ell\ell$). Two lepton flavor combinations (ee and $μμ$) are required and events are classified as having 0, 1, and $\geq$2 b-tagged jets in the final state. No significant excess is observed over the standard model backgrounds. Upper limits are set on the production cross section of the new physics signals. These translate into lower limits on the energy scale $Λ$ of 6.9 to 9.0 TeV in the bb$\ell\ell$ model, depending on model parameters, and on the ratio of energy scale and effective coupling, $Λ/g_*$, of 2.0 to 2.6 TeV in the bs$\ell\ell$ model. The latter represent the most stringent limits on this model to date. Lepton flavor universality is also tested by comparing the dielectron and dimuon mass spectra for different b-tagged jet multiplicities. No significant deviation from the standard model expectation of unity is observed.
Signal efficiencies with Full Run 2 dimuon channel for different bbll signal scenarios
Signal efficiencies with Full Run 2 dimuon channel for different bbll (destructive interference) signal scenarios
Signal efficiencies with Full Run 2 dimuon channel in 1b final state for different bbll signal scenarios
A search for the production of three Higgs bosons ($HHH$) in the $b\bar{b}b\bar{b}b\bar{b}$ final state is presented. The search uses $126~\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis targets both non-resonant and resonant production of $HHH$. The resonant interpretations primarily consider a cascade decay topology of $X\rightarrow SH\rightarrow HHH$ with masses of the new scalars $X$ and $S$ up to 1.5 TeV and 1 TeV, respectively. In addition to scenarios where $S$ is off-shell, the non-resonant interpretation includes a search for standard model (SM) $HHH$ production, with limits on the tri-linear and quartic Higgs self-coupling set. No evidence for $HHH$ production is observed. An upper limit of 59 fb is set, at 95% confidence level, on the cross-section for Standard-Model $HHH$ production.
Jet pairing efficiencies over the parameter space for the SM-like $(\kappa_3,\kappa_4)$ scan. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
Jet pairing efficiencies over the parameter space for the TRSM signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
Jet pairing efficiencies over the parameter space for the narrow-width heavy resonance signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.
A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.
Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Differential measurements of Higgs boson production in the $\tau$-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF), $VH$ and $t\bar{t}H$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb$^{-1}$ of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: the Simplified Template Cross-Section (STXS) approach and an Unfolded Fiducial Differential measurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson's transverse momentum ($p^{\text{H}}_\text{T}$), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets ($m_{jj}$). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction for $m_{jj}>1.5$ TeV and $p^{\text{H}}_\text{T}>200$ GeV ($p^{\text{H}}_\text{T}<200$ GeV) is ${1.29}^{+0.39}_{-0.34}$ (${0.12}^{+0.34}_{-0.33}$). This is the first VBF measurement for the higher-$p^{\text{H}}_\text{T}$ criteria, and the most precise for the lower-$p^{\text{H}}_\text{T}$ criteria. The fiducial cross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed $\Delta\phi_{jj}$ between the two leading jets. The measurements have a precision of 30%-50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient $c_{H\tilde{W}}$.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}>200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_1 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} \nu$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140~fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$
The expected EFT limits at 95% CL, shown for the linear-only electron, muon, and combined fits.
The expected EFT limits at 95% CL, shown for the linear+quadratic electron, muon, and combined fits.
The observed EFT limits at 95% CL, shown for the linear-only electron, muon, and combined fits.
A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.
Signal efficiency as a function of the mass $m_\phi$ after triple b tag selection for 2017 SL (squares), 2017 FH (triangles), and 2018 FH (circles) channels.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 SL category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 FH category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
A search for the rare decay D$^0$$\to$$\mu^+\mu^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0\pi^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$\mu^+\mu^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Summary of branching fraction.
Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.
The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
We present high-statistic data on charged pion emission from Au+Au collisions at $\sqrt{s_{\rm{NN}}}$ = 2.4 GeV (corresponding to $E_{beam}$ = 1.23 A GeV) in four centrality classes in the range 0 - 40$\%$ of the most central collisions. The data are analyzed as a function of transverse momentum, transverse mass, rapidity, and polar angle. Pion multiplicity per participating nucleon decreases moderately with increasing centrality. The polar angular distributions are found to be non-isotropic even for the most central event class. Our results on pion multiplicity fit well into the general trend of the world data, but undershoot by $2.5 \sigma$ data from the FOPI experiment measured at slightly lower beam energy. We compare our data to state-of-the-art transport model calculations (PHSD, IQMD, PHQMD, GiBUU and SMASH) and find substantial differences between the measurement and the results of these calculations.
Mid-rapidity and forward rapidity transverse momentum distributions ($p_{t}$) for charged pion for the 10$\%$most central events.
Reduced transverse mass distribution for negatively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity (-0.65 > y$_{cm}$ < -0.55) is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.
Reduced transverse mass distribution for positively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in $\sqrt{s_{_{NN}}}=200$~GeV Au$+$Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by Lévy-stable source distributions. The extracted source parameters are the correlation-strength parameter $\lambda$, the Lévy index of stability $\alpha$, and the Lévy-scale parameter $R$ as a function of transverse mass $m_T$ and centrality. The $\lambda(m_T)$ parameter is constant at larger values of $m_T$, but decreases as $m_T$ decreases. The Lévy scale parameter $R(m_T)$ decreases with $m_T$ and exhibits proportionality to the length scale of the nuclear overlap region. The Lévy exponent $\alpha(m_T)$ is independent of $m_T$ within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the Lévy exponent $\alpha$ is significantly different from that of Gaussian ($\alpha=2$) or Cauchy ($\alpha=1$) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50%-60%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the $\eta'$ meson is included. In each centrality class, the best value of the in-medium $\eta'$ mass is compared to the mass of the $\eta$ meson, as well as to several theoretical predictions that consider restoration of $U_A(1)$ symmetry in hot hadronic matter.
The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 0-10% centrality bin obtained from Lévy fits with Eq. (9).
The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 10-20% centrality bin obtained from Lévy fits with Eq. (9).
The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 20-30% centrality bin obtained from Lévy fits with Eq. (9).
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category in tZq events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tW}}^{\mathrm{I}}$ is set to unity are plotted separately.
Distribution of the discretized $c_{\mathrm{tZ}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tZ}}^{\mathrm{I}}$-like category in $t\bar{t}Z$ events. The contributions from the SM, linear, and quadratic terms when $c_{\mathrm{tZ}}^{\mathrm{I}}$ is set to unity are plotted separately.
Distribution of the discretized $c_{\mathrm{tW}}^{\mathrm{I}}$ score for events in the $c_{\mathrm{tW}}^{\mathrm{I}}$-like category, compared with the predictions obtained when all fit parameters are set to their maximum likelihood value in the linear fit.
A direct search for new heavy neutral Higgs bosons A and H in the $\mathrm{t\bar{t}}$Z channel is presented, targeting the process pp $\to$ A $\to$ ZH with H $\to$$\mathrm{t\bar{t}}$. For the first time, the channel with decays of the Z boson to muons or electrons in association with all-hadronic decays of the $\mathrm{t\bar{t}}$ system is targeted. The analysis uses proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV, which correspond to an integrated luminosity of 138 fb$^{-1}$. No signal is observed. Upper limits on the product of the cross section and branching fractions are derived for narrow resonances A and H with masses up to 2100 and 2000 GeV, respectively, assuming A boson production through gluon fusion. The results are also interpreted within two-Higgs-doublet models, where A and H are CP-odd and CP-even states, respectively, complementing and substantially extending the reach of previous searches.
Distributions of p_T(Z) × ∆m in the SR after the fit to data with a (mA , mH) signal hypothesis of (1000, 350) GeV. The post-fit signal yields are compatible with zero events in all bins. The pre-fit signal is arbitrarily scaled and therefore omitted.
Distributions of p_T(Z) × ∆m in the SR after the fit to data with a (mA , mH) signal hypothesis of (1000, 350) GeV. The post-fit signal yields are compatible with zero events in all bins. The pre-fit signal is arbitrarily scaled and therefore omitted.
Distributions of p_T(Z) × ∆m in the SR after the fit to data with a (mA , mH) signal hypothesis of (1000, 850) GeV. The pre-fit signal is arbitrarily scaled and therefore omitted.
A search is performed for localized excesses in the low-mass dijet invariant mass distribution, targeting a hypothetical new particle decaying into two jets and produced in association with either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample from LHC proton-proton collisions collected by the ATLAS experiment at a center-of-mass energy of 13 TeV during 2015-2018. Two variants of the search are presented for each type of initial-state radiation: one that makes no jet flavor requirements and one that requires both of the jets to have been identified as containing $b$-hadrons. No excess is observed relative to the Standard Model prediction, and the data are used to set upper limits on the production cross-section for a benchmark $Z'$ model and, separately, for generic, beyond the Standard Model scenarios which might produce a Gaussian-shaped contribution to dijet invariant mass distributions. The results extend the current constraints on dijet resonances to the mass range between 200 and 650 GeV.
Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.
Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma b b$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.
Dijet invariant mass distributions data compared to the fitted background estimates for the $j j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.
A measurement of the $B^{0}$ meson lifetime and related properties using $B^0 \to J/ψK^{*0}$ decays in data from 13 TeV proton-proton collisions with an integrated luminosity of 140 fb$^{-1}$ recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is $$ τ= 1.5053 \pm 0.0012 ~\mathrm{(stat.)} \pm 0.0035 ~\mathrm{(syst.)~ps}. $$ The average decay width extracted from the effective lifetime, using parameters from external sources, is $$ Γ_d = 0.6639 \pm 0.0005 ~\mathrm{(stat.)} \pm 0.0016 ~\mathrm{(syst.)}\pm 0.0038 ~\textrm{(ext.)} \textrm{ ps}^{-1}, $$ where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of $Γ_s$ in the $B^0_s \to J/ψϕ$ decay was used to derive a value for the ratio of the average decay widths $Γ_d$ and $Γ_s$ for $B^{0}$ and $B_s^{0}$ mesons respectively, of $$ \frac{Γ_d }{Γ_s } = 0.9905 \pm 0.0022 ~\textrm{(stat.)} \pm 0.0036 ~\textrm{(syst.)} \pm 0.0057 ~\textrm{(ext.)}. $$ The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the $B^{0}$ meson to date.
The measured effective lifetime for the $B^0 \rightarrow J/\psi\,K^{*0}$ decay.
The measured average decay width $\Gamma_{d}\,$ extracted from the average lifetime.
The measured ratio $\Gamma_{d} / \Gamma_{s}\,$ of the average decay widths.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $β$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.2\times10^{-48}$ cm$^{2}$ at the 90% confidence level and the best SI median sensitivity achieved is $5.1\times10^{-48}$ cm$^{2}$, both for a mass of 40 GeV/$c^2$.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.
90% CL CRDM-nucleon cross sections
The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.
A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 1.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 2.
Total invariant mass distribution $m_{4\ell}$ in Signal Region 1.
We report results from an updated search for neutral current (NC) resonant $\Delta$(1232) baryon production and subsequent $\Delta$ radiative decay (NC $\Delta\rightarrow N \gamma$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $\Delta(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $\Delta\rightarrow N \gamma$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $\Delta\rightarrow N \gamma$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.
The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.
Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.
Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.
We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.
Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.
Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
A combination of searches for the single production of vector-like top quarks ($T$) is presented. These analyses are based on proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The $T$-quark decay modes considered in this combination are into a top quark and either a Standard Model Higgs boson or a $Z$ boson ($T \to Ht$ and $T \to Zt$). The individual searches used in the combination are differentiated by the number of leptons ($e$, $\mu$) in the final state. The observed data are found to be in good agreement with the Standard Model background prediction. Interpretations are provided for a range of masses and couplings of the vector-like top quark for benchmark models and generalized representations in terms of 95% confidence level limits. For a benchmark signal prediction of a vector-like top quark SU2 singlet with electroweak coupling, $\kappa$, of 0.5, masses below 2.1 TeV are excluded, resulting in the most restrictive limits to date.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.5. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) doublet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
A search for exotic decays of the 125 GeV Higgs boson into a pair of new spin-0 particles, $H \to aa$, where one decays into a photon pair and the other into a $\tau$-lepton pair, is presented. Hadronic decays of the $\tau$-leptons are considered and reconstructed using a dedicated tagger for collimated $\tau$-lepton pairs. The search uses 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider. The search is performed in the mass range of the $a$ boson between 10 GeV and 60 GeV. No significant excess of events is observed above the Standard Model background expectation. Model-independent upper limits at 95$\% $ confidence level are set on the branching ratio of the Higgs boson to the $\gamma\gamma\tau\tau$ final state, $\mathcal{B}(H\to aa\to \gamma\gamma\tau\tau)$, ranging from 0.2$\% $ to 2$\% $, depending on the $a$-boson mass hypothesis.
Distribution of the diphoton invariant mass for all events satisfying the analysis selections in the full Run 2 dataset.
Scan of the observed $p$-value as a function of $m_{a}$ for the background-only hypothesis.
The observed and expected ($\pm1\sigma$) upper limits at 95% CL on the branching ratio for $H\rightarrow aa\rightarrow \gamma\gamma\tau\tau$ as a function of the resonance mass hypothesis $m_{a}$.
Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 140 $\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with the $H^{\pm}$ decays hadronically or semi-leptonically, the search targets $\tau$+jets or $\tau$+lepton final states, in both cases with a $\tau$-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of $80 \leq m_{H^{\pm}} \leq 3000$ GeV, upper limits at 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.5 pb-0.4 fb. In the mass range 80-160 GeV, assuming the Standard Model cross-section for $t\bar{t}$ production, this corresponds to upper limits between 0.27% and 0.02% on $\mathrm{\cal{B}}(t\to bH^{\pm}) \times \mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
Observed and expected 95 % CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.
Observed and expected 95 % CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.
Observed and expected 95 % CL exclusion limits on $\tan\beta$ as a function of $m_{H^{\pm}}$, shown in the context of the hMSSM scenario, for $m_{H^{\pm}}>150$ GeV and $(1 \leq \tan\beta \leq 60)$. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.
A search is performed for dark matter (DM) produced in association with a single top quark or a pair of top quarks using the data collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to 138 fb$^{-1}$ of integrated luminosity. An excess of events with a large imbalance of transverse momentum is searched for across 0, 1 and 2 lepton final states. Novel multivariate techniques are used to take advantage of the differences in kinematic properties between the two DM production mechanisms. No significant deviations with respect to the standard model predictions are observed. The results are interpreted considering a simplified model in which the mediator is either a scalar or pseudoscalar particle and couples to top quarks and to DM fermions. Axion-like particles that are coupled to top quarks and DM fermions are also considered. Expected exclusion limits of 410 and 380 GeV for scalar and pseudoscalar mediator masses, respectively, are set at the 95% confidence level. A DM particle mass of 1 GeV is assumed, with mediator couplings to fermions and DM particles set to unity. A small signal-like excess is observed in data, with the largest local significance observed to be 1.9 standard deviations for the 150 GeV pseudoscalar mediator hypothesis. Because of this excess, mediator masses are only excluded below 310 (320) GeV for the scalar (pseudoscalar) mediator. The results are also translated into model-independent 95% confidence level upper limits on the visible cross section of DM production in association with top quarks, ranging from 1 pb to 0.02 pb.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, 0 forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, $\geq 1$ forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.
The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the $\geq 2$ b jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.