A search for the central exclusive production of top quark-antiquark pairs ($\mathrm{t\bar{t}}$) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$^{-1}$. The $\mathrm{t\bar{t}}$ decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.
Measurements of Higgs boson production, where the Higgs boson decays into a pair of $\tau$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $\tau$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 $\pm$ 0.11 for inclusive Higgs boson production, 0.67 $\pm$ 0.19 (0.81 $\pm$ 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 $\pm$ 0.45 for vector boson associated Higgs boson production.
A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu q\bar{q}'$ and the dilepton decay channels HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu \ell\nu$ and HH $\to$ $\mathrm{b\bar{b}}\tau\tau$ $\to$ $\mathrm{b\bar{b}}\ell\nu\nu \ell\nu\nu$ are examined, where $\ell$ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the H $\to$ $\mathrm{b\bar{b}}$ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X $\to$ HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X $\to$ HH searches.
Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width - related to its lifetime - is an important parameter. One way to determine this quantity is by measuring its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here, we report evidence for such off-shell contributions to the production cross section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell contribution is excluded at a $p$-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $\Gamma_{\mathrm{H}}$ = 3.2 $_{-1.7}^{+2.4}$ MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.
The first measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb$^{-1}$, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $\mathrm{t\bar{t}}$ production cross section of 881 $\pm$ 23 (stat+syst) $\pm$ 20 (lumi) pb is measured, in agreement with the standard model prediction of 924 $^{+32}_{-40}$ pb.
A search for resonances in events with the $\gamma$+jet final state has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the $\gamma$+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting the mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the $\gamma$+jet final state.
A search for the production of pairs of heavy Majorana neutrinos (N$_\ell$) from the decays of Z' bosons is performed using the CMS detector at the LHC. The data were collected in proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV, with an integrated luminosity of 138 fb$^{-1}$. The signature for the search is an excess in the invariant mass distribution of the final-state objects, two same-flavor leptons (e or $\mu$) and at least two jets. No significant excess of events beyond the expected background is observed. Upper limits at 95% confidence level are set on the product of the Z' production cross section and its branching fraction to a pair of N$_\ell$, as functions of N$_\ell$ and Z' boson masses ($m_{\mathrm{N}_\ell}$ and $m_\mathrm{Z'}$, respectively) for $m_\mathrm{Z'}$ from 0.4 to 4.6 TeV and $m_{\mathrm{N}_\ell}$ from 0.1 TeV to $m_\mathrm{Z'}$/2. In the theoretical framework of a left-right symmetric model, exclusion bounds in the $m_{\mathrm{N}_\ell}-m_\mathrm{Z'}$ plane are presented in both the electron and muon channels. The observed upper limit on $m_\mathrm{Z'}$ reaches up to 4.42 TeV. These are the most restrictive limits to date on the mass of N$_\ell$ as a function of the Z' boson mass.
The first measurement of the inclusive and normalised differential cross sections of single top quark production in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13.6 TeV is presented. The data were recorded with the CMS detector at the LHC in 2022, and correspond to an integrated luminosity of 34.7 fb$^{-1}$. The analysed events contain one muon and one electron in the final state. For the inclusive measurement, multivariate discriminants exploiting the kinematic properties of the events are used to separate the signal from the dominant top quark-antiquark production background. A cross section of 82.3 $\pm$ 2.1 (stat) ${}^{+9.9}_{-9.7}$ (syst) $\pm$ 3.3 (lumi) pb is obtained, consistent with the predictions of the standard model. A fiducial region is defined according to the detector acceptance to perform the differential measurements. The resulting differential distributions are unfolded to particle level and show good agreement with the predictions at next-to-leading order in perturbative quantum chromodynamics.
Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
The inclusive WZ production cross section is measured in proton-proton collisions at a centre-of-mass energy of 13.6 TeV, using data collected during 2022 with the CMS detector, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. The measurement uses multileptonic final states and a simultaneous likelihood fit to the number of events in four different lepton flavour categories: eee, ee$\mu$, $\mu\mu $e, and $\mu\mu\mu$. The selection is optimized to minimize the number of background events, and relies on an efficient prompt lepton discrimination strategy. The WZ production cross section is measured in a phase space defined within a 30 GeV window around the Z boson mass, as $\sigma_{\text{total}}$(pp $\to$ WZ) = 55.2 $\pm$ 1.2 (stat) $\pm$ 1.2 (syst) $\pm$ 0.8 (lumi) $\pm$ 0.3 (theo) pb. In addition, the cross section is measured in a fiducial phase space closer to the detector-level requirements. All the measurements presented in this paper are in agreement with standard model predictions.