We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
We report on the measurement of spin density matrix elements of the $\Lambda(1520)$ in the photoproduction reaction $\gamma p\rightarrow \Lambda(1520)K^+$, via its subsequent decay to $K^{-}p$. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Lab using a linearly polarized photon beam with $E_\gamma =$ 8.2-8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, $-(t-t_\text{0})$. We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are dominant in $\Lambda(1520)$ photoproduction.
Numerical results for all presented SDMEs. The first uncertainty is statistical, the second systematic
Numerical results for all presented natural and unnatural combinations, and covariances between $\rho^1_{11}$ and $\rho^1_{33}$. The first uncertainty is statistical, the second systematic
This table contains thinned out samples of the Markov chains used in the parameter estimation of the SDME measurements for $-(t-t_\text{0}) = 0.197\pm0.069~\text{GeV}^2/c^2$, reported in the main article. One in about 250 steps in the chain, which results in 200 different sets of SDMEs, is provided. These values should be used instead of bootstrapping of the results, in order to estimate uncertainties of physics models fitted to this data. To assess how the uncertainties propagate to the model uncertainties, one should evaluate the model under scrutiny for each of the 200 different sets of SDMEs. Plotting all resulting lines in a single plot will create bands which reflect the influence of the uncertainties in the data on the model. This method has the great advantage that all correlations are accurately taken into account.
The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.
Photon beam asymmetry Sigma at W= 1.2711 GeV
Photon beam asymmetry Sigma at W= 1.2858 GeV
Photon beam asymmetry Sigma at W= 1.3003 GeV
We report a measurement of the $\pi^-$ photoproduction beam asymmetry for the reaction $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $\Sigma$ is measured as a function of four-momentum transfer $t$ to the $\Delta^{++}$ and compared to phenomenological models. We find that $\Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.
Beam asymmetry $\Sigma$ vs. $|t|$ compared to theoretical predictions. The uncertainty on $|t|$ is the rms of values in the $\Delta^{++}$ signal region. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 1.5% on the magnitude of $\Sigma$.
We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.
Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
We report measurements of the photon beam asymmetry $\Sigma$ for the reaction $\vec{\gamma} p\to K^+\Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $\Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $\Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $\Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $\Sigma = 1.00\pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $\Sigma = 0.41 \pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.
Beam asymmetry $\Sigma$ for the low $-t$ region where the horizontal error bars indicate the rms widths of the $t$ bin. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.
Average beam asymmetry $\Sigma$ for the low $-u$ region where the uncertainty on $\Sigma$ is the statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.
Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.
Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.
Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}
The $\gamma n \to \pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nuclear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $\gamma n \to \pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* \to \gamma n$ at the resonance poles are determined for the first time.
Excitation function at pion c.m. angle THETA=18 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
Excitation function at pion c.m. angle THETA=32 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
Excitation function at pion c.m. angle THETA=41 deg as function of incident photon energy E. The uncertainties are statistical and systematic, combined in quadrature.
We report on the measurement of the $\gamma p \rightarrow J/\psi p$ cross section from $E_\gamma = 11.8$ GeV down to the threshold at $8.2$ GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section $d\sigma /dt$ has an exponential slope of $1.67 \pm 0.39$ GeV$^{-2}$ at $10.7$ GeV average energy. The LHCb pentaquark candidates $P_c^+$ can be produced in the $s$-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions $\mathcal{B}(P_c^+ \rightarrow J/\psi p)$ and cross sections $\sigma(\gamma p \to P_c^+)\times\mathcal{B}(P_c^+ \to J/\psi p) $.
$\gamma p \rightarrow J/\psi p$ total cross-sections, statistical and systematic errors of the individual points in bins of beam energy. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.
$\gamma p \rightarrow J/\psi p$ differential cross-sections, statistical and systematic errors of the individual points in bins of $-(t-t_{min})$. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.