Emission of intermediate mass fragments (IMFs) (Z>~3) from central collisions of 40Ar+45Sc (E/A=35–115 MeV), 58Ni+58Ni (E/A=35–105 MeV), and 86Kr+93Nb (E/A=35–95 MeV) was studied. For each system, the average number of IMFs per event increased with beam energy, reached a maximum, and then decreased. The beam energy of peak IMF production increased linearly with the combined mass of the system. The number of IMFs emitted at the peak also increased with the system mass. Percolation calculations showed a weaker dependence of the peak beam energy and the number of IMFs on the total mass of the system.
Uncertainty in EKIN is 1 PCT.
None
No description provided.
The nuclear modification factors of J/$\psi$ and $\psi$(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 $\mu$b$^{-1}$ and 28 pb$^{-1}$, respectively. The measurements are performed in the dimuon rapidity range of $|y| <$ 2.4 as a function of centrality, rapidity, and transverse momentum (p$_\mathrm{T}$) from p$_\mathrm{T}=$ 3 GeV/$c$ in the most forward region and up to 50 GeV/$c$. Both prompt and nonprompt (coming from b hadron decays) mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV for the two J/$\psi$ meson components. No dependence on rapidity is observed for either prompt or nonprompt J/$\psi$ mesons. An indication of a lower prompt J/$\psi$ meson suppression at p$_\mathrm{T} >$ 25 GeV/$c$ is seen with respect to that observed at intermediate p$_\mathrm{T}$. The prompt $\psi$(2S) meson yield is found to be more suppressed than that of the prompt J/$\psi$ mesons in the entire p$_\mathrm{T}$ range.
Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon pT for pp and PbPb collisions, for all centralities.
Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon rapidity for pp and PbPb collisions, for all centralities.
Differential cross section of prompt J/psi mesons as a function of dimuon pT in pp and PbPb collisions. The PbPb cross sections are normalised by TAA for direct comparison. Global uncertainties arise from the integrated luminosity uncertainty in pp collisions, and the number of minimum bias events and TAA uncertainties for PbPb collisions.
Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.
Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).
No description provided.
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
Ξ− interactions in hydrogen and deuterium are studied close to the forward direction using the CERN charged hyperon beam. The inclusive production of ∑*−(1385),Ξ−,Ξ*0(1530),Ξ*−(1700),Ξ*−(1830), and Ω− is observed, as well as an enhancement in theΞ−π+ channel at 1940 MeV/c2. The momentum distributions and the production cross sections are measured for ∑*−(1385),Ξ−,Ξ*0(1530), and Ω−.
No description provided.
No description provided.
No description provided.
The Σ − p and Σ − d total cross sections have been measured to a statistical accuracy of ±1% and ±0.5%, respectively, at five momenta from 74.5 to 136.9 GeV/ c , using the hyperon beam at the CERN SPS. The Ξ − p and Ξ − d total cross sections have also been measured to the same statistical accuracy at 101.5 and 133.8 GeV/ c . The systematic uncertainty at each momentum is estimated to be of the order of ±0.5%. The hyperon-nucleon cross sections are shown to be rising with energy, and the data are compared with various phenomenological models.
Axis error includes +- 0.10/0.10 contribution (FOR DEUT TARGET. ADDED TO STAT. ERROR IN QUADRATURESAME AS ABOVE). Axis error includes +- 0.15/0.15 contribution (FOR PROTON TARGET. ADDED TO STAT. ERROR IN QUADRATURE.UNCERTAINTY OF EXTRAPOLATION OVER T).
No description provided.
A method for the determination of neutron spectra in a bubble chamber experiment is developed. Double differential cross sections for inclusive neutron and lambda production are presented. The n/Λ particle ratios are determined as functions of x and p T ; at p T = 0 GeV/ c they are compatible with the ratios measured in pCu interactions at 24 GeV/ c . Our neutron spectra are compared with spectra for protons produced near the direction of the incident neutron in pn interactions at FNAL and with neutron spectra measured in pp interactions at the ISR. Exchange mechanisms are studied in the framework of single diffraction dissociation and the triple-Regge model. The scattering of virtual pions and kaons on real protons is investigated.
No description provided.
No description provided.
No description provided.
The reaction e p→e'p π 0 has been measured at W =2.55 GeV a fixed electron scattering angle of 10.3°. Two magnetic spectrometers and a lead glass hodoscope were used to detect all four final state particles. Electroproduction cross sections in the t range −0.15 to −1.4 (GeV/ c ) 2 at q 2 = −0.22, −0.55 and −0.85 (GeV/ c ) 2 are presented. Above | t |=0.6 (GeV/ c ) 2 the cross sections are considerably smaller than those for photoproduction.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT BY TDBW.
Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.
The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.
Axis error includes +- 0.0/0.0 contribution (?////Errors given are the statistical errors and systematic uncertainties add ed in quadreture).