Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.
We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.
Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.
$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.
$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.
We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Phys. Rev. Lett. 14, 408 (1965)
No description provided.
No description provided.
No description provided.
The process $e^{+}e^{-}\to \eta^{\prime} J/\psi$ is observed for the first time with a statistical significance of $8.6\sigma$ at center-of-mass energy $\sqrt{s} = 4.226$ GeV and $7.3\sigma$ at $\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \pm 0.7 \pm 0.3)$ and $(3.9 \pm 0.8 \pm 0.3)$ pb at $\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.
Summary of the values used to calculate the Born cross section of $e^{+}e^{-}\to\eta^{\prime} J/\psi$. The upper limits are at the $90\%$ C.L.
Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies $\sqrt{s} >$ 4.4 GeV, the processes $e^+e^- \rightarrow \omega \chi_{c1,2}$ are observed for the first time. With an integrated luminosity of $1074 pb^{-1}$ near $\sqrt{s} =$ 4.42 GeV, a significant $\omega \chi_{c2}$ signal is found, and the cross section is measured to be $(20.9 \pm 3.2 \pm 2.5)\pb$. With $567 pb^{-1}$ near $\sqrt{s} =$ 4.6 GeV, a clear $\omega \chi_{c1}$ signal is seen, and the cross section is measured to be $(9.5 \pm 2.1 \pm 1.3) \pb$, while evidence is found for an $\omega \chi_{c2}$ signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the $\omega \chi_{c2}$ cross section, an enhancement is seen around $\sqrt{s} =$ 4.42 GeV. Fitting the cross section with a coherent sum of the $\psi(4415)$ Breit-Wigner function and a phase space term, the branching fraction $\mathcal{B}(\psi(4415)\to\omega\chi_{c2})$ is obtained to be of the order of $10^{-3}$.
Results on $e^+e^-\to \omega \chi_{c0}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1+\delta)\frac{1}{|1-\Pi|^{2}}(\epsilon_{\pi}\mathcal{B}(\chi_{c0}\to\pi^+\pi^-)+\epsilon_{K}\mathcal{B}(\chi_{c0}\to K^+K^-))\mathcal{B}(\omega\to\pi^+\pi^{-}\pi^{0})\mathcal{B}(\pi^{0}\to\gamma\gamma)$ for $\omega\chi_{c0}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point.
Results on $e^+e^-\to \omega \chi_{c1}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c1}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c1}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Results on $e^+e^-\to \omega \chi_{c2}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c2}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c2}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
None
No description provided.
None
'1'.
None
No description provided.
None
RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.
TABLE 1 (REF. 1 ).
RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.