The factor of four increase in the LHC luminosity, from $0.5\times 10^{34}\,\textrm{cm}^{-2}\textrm{s}^{-1}$ to $2.0\times 10^{34}\textrm{cm}^{-2}\textrm{s}^{-1}$, and the corresponding increase in pile-up collisions during the 2015-2018 data-taking period, presented a challenge for ATLAS to trigger on missing transverse momentum. The output data rate at fixed threshold typically increases exponentially with the number of pile-up collisions, so the legacy algorithms from previous LHC data-taking periods had to be tuned and new approaches developed to maintain the high trigger efficiency achieved in earlier operations. A study of the trigger performance and comparisons with simulations show that these changes resulted in event selection efficiencies of >98% for this period, meeting and in some cases exceeding the performance of similar triggers in earlier run periods, while at the same time keeping the necessary bandwidth within acceptable limits.
A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.
A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.
A comparison of the measured cell $E_T^{miss}$ distribution with that predicted by the two-component model for two pile-up scenarios. The magenta points extend the measured distribution using L1 $E_T^{miss} > 30\,$GeV and L1 $E_T^{miss} > 50\,$GeV data. The red curve is the prediction from the calorimeter-resolution part of the model. The green curve is the high $E_T^{miss}$ tail's probability distribution for the mean number of $pp$ interactions $\mu$ in each figure. The blue curve is the full model prediction computed by combining the $E_T^{miss}$ from these two individual sources shown in red and green, each calculated for $\mu=\langle\mu\rangle$. The black points show the unbiased $E_T^{miss}$ distribution measured in data. Corresponds to a prediction for $\langle\mu\rangle = 25$.
A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.
Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.
A search is presented for pair-production of long-lived neutral particles using 33 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes $c \tau$ from 5 cm to 1 m.
IDVx selection efficiency as a function of the radial decay position for $m_H = 125$ GeV.
IDVx selection efficiency as a function of the radial decay position for $m_s = 50$ GeV.
Observed $CL_S$ limits on $BR$ for $m_H = 125$ GeV.
A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.
The $M_{T}$ distribution in the WZ-enriched region. The last bin contains the overflow events.
The $L_{T}$ distribution in the ttZ-enriched region. The last bin contains the overflow events.
The $S_{T}$ distribution in the ZZ-enriched region. The last bin contains the overflow events.
A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.
<h1>Overview of reinterpretation material</h1><p><b>Important note:</b> A detailed explanation of the reinterpretation material can be found <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-04/hepdata_info.pdf">here</a>.<br/>Please read this stand-alone document before reinterpreting the search.</p><h2>Parameterized detection efficiencies</h2><p>RPV SUSY model: Tables <a href="90606?version=1&table=Table27">27</a> to <a href="90606?version=1&table=Table44">44</a><br/>Z' toy model: Tables <a href="90606?version=1&table=Table45">45</a> to <a href="90606?version=1&table=Table59">59</a></p><h2>Further material for the RPV SUSY model</h2><p>Acceptances: Tables <a href="90606?version=1&table=Table18">18</a> (ee), <a href="90606?version=1&table=Table19">19</a> (emu) and <a href="90606?version=1&table=Table20">20</a> (mumu)<br/>Detection efficiencies: Tables <a href="90606?version=1&table=Table21">21</a> (ee), <a href="90606?version=1&table=Table22">22</a> (emu) and <a href="90606?version=1&table=Table23">23</a> (mumu)<br/>Overall signal efficiencies: Tables <a href="90606?version=1&table=Table24">24</a> (ee), <a href="90606?version=1&table=Table25">25</a> (emu) and <a href="90606?version=1&table=Table26">26</a> (mumu)</p><h2>Further material for the Z' toy model</h2><p>Acceptances, detection efficiencies and overall signal efficiencies: Tables <a href="90606?version=1&table=Table60">60</a> (mZ' = 100 GeV) to <a href="90606?version=1&table=Table64">64</a> (mZ' = 1000 GeV)</p>
dRcos distribution of dimuon pairs (scaled) and dimuon vertices in the cosmic rays control region. The distribution of all dimuon pairs is scaled to the DV distribution.
Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
Transverse mass distribution for events satisfying all selection criteria in the electron channel.
Transverse mass distribution for events satisfying all selection criteria in the muon channel.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.
Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).
A general search is presented for a low-mass $\tau^-\tau^+$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson X decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B $\to$ bX. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for X boson masses between 20 and 70 GeV.
The product of acceptance, efficiency, and branching fraction of $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with $\mathrm{A} \rightarrow \tau\tau$ in the $\mathrm{e}\tau_\mathrm{h}$ and $\mu\tau_\mathrm{h}$ channels of the 1 b tag event category, as a function of the pseudoscalar mass. The selections are as described in the paper. The uncertainty refers to the statistical uncertainty only.
Observed $m_{\tau\tau}$ distribution in the $\mathrm{e}\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
Observed $m_{\tau\tau}$ distribution in the $\mu\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying $\tau$-lepton is presented. Two exclusive final states with either exactly one or at least two $\tau$-leptons are considered. The analysis is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with $\tau$-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of $\tan\beta$ in the range $2 \leq \tan\beta \leq 60$, and below 120 TeV for $\tan\beta>30$.
1$\tau$ Compressed SR eff.
1$\tau$ MediumMass SR eff.
2$\tau$ Compressed SR eff.