Date

Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

208 data tables match query

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.

More…

Measurement of the diffractive cross-section in deep inelastic scattering

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 70 (1996) 391-412, 1996.
Inspire Record 415942 DOI 10.17182/hepdata.44849

Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm

3 data tables match query

No description provided.

No description provided.

No description provided.


Results on Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 510$ GeV with the STAR Detector at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 852 (2024) 138601, 2024.
Inspire Record 2704122 DOI 10.17182/hepdata.144920

We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.

2 data tables match query

Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.

Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.


Diffractive Photoproduction of D*+/-(2010) at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 301-315, 2007.
Inspire Record 747652 DOI 10.17182/hepdata.45627

Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.

12 data tables match query

Total cross section integrated over the given kinematic range.

Ratio of diffractive to inclusive D* cross section.

Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).

More…

Study of photon dissociation in diffractive photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 421-435, 1997.
Inspire Record 442287 DOI 10.17182/hepdata.10933

Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.

4 data tables match query

Fraction of the total photoproduction cross section attributed to the photon dissociation.

The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.

Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.

More…

THE REACTION K- n ---> K- pi+ pi- n AT 12-GeV/c

Lucas, P. ; Bachman, L. ; Chien, C.-Y. ; et al.
Nucl.Phys.B 133 (1978) 365-396, 1978.
Inspire Record 6743 DOI 10.17182/hepdata.35142

The reaction K − n → K − π + π − n has been studied in the SLAC 82″ liquid deuterium bubble chamber with a beam momentum of 12 GeV/ c . Although the kinematic fit for this final state has only one constraint, nonetheless a reasonably pure sample has been obtained. The cross section for the reaction is 1.02 ± 0.10 mb. The process K − n → K ∗0 890 Δ − is observed with cross section 36 ± 9 μ b and t -slope of 10 ± 2 (GeV/ c ) −2 . A kaon diffraction dissociation sample has been obtained, although the Q-signal is not so strong as in experiments with proton targets. Neutron dissociation into n π + π − is also observed with similar properties to those of proton dissociation into p π + π − , but with a broader t -distribution.

1 data table match query

BEAM AND TARGET DIFFRACTION DISSOCIATION DATA ARE REPORTED.


Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.


Measurements of $\pi^- p$ Forward Elastic Scattering at High-energies

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 111, 1982.
Inspire Record 166767 DOI 10.17182/hepdata.31011

The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.

1 data table match query

RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).


Experimental Results on $p p$ Forward Elastic Scattering and the Possibility of Universal Shrinkage of the Hadronic Diffraction Cone

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 124-128, 1982.
Inspire Record 168617 DOI 10.17182/hepdata.31001

The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.

1 data table match query

FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.


Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

1 data table match query

MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.