We present a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B\to D\ellν_\ell$ using a $365~\mathrm{fb}^{-1}$$e^+e^-\toΥ(4S)\to B\bar B$ data sample recorded by the Belle II experiment at the SuperKEKB collider. The semileptonic decay of one $B$ meson is reconstructed in the modes $B^0\to D^-(\to K^+π^-π^-)\ell^+ν_\ell$ and $B^+\to \bar D^0(\to K^+π^-)\ell^+ν_\ell$, where $\ell$ denotes either an electron or a muon. Charge conjugation is implied. The second $B$ meson in the $Υ(4S)$ event is not reconstructed explicitly. Using an inclusive reconstruction of the unobserved neutrino momentum, we determine the recoil variable $w=v_B\cdot v_D$, where $v_B$ and $v_D$ are the 4-velocities of the $B$ and $D$ mesons. We measure the total decay branching fractions to be $\mathcal{B}(B^0\to D^-\ell^+ν_\ell)=(2.06 \pm 0.05\,(\mathrm{stat.}) \pm 0.10\,(\mathrm{sys.}))\%$ and $\mathcal{B}(B^+\to\bar D^0\ell^+ν_\ell)=(2.31 \pm 0.04\,(\mathrm{stat.}) \pm 0.09\,(\mathrm{sys.}))\%$. We probe lepton flavor universality by measuring $\mathcal{B}(B\to Deν_e)/\mathcal{B}(B\to Dμν_μ)=1.020 \pm 0.020\,(\mathrm{stat.})\pm 0.022\,(\mathrm{sys.})$. Fitting the partial decay branching fraction as a function of $w$ and using the average of lattice QCD calculations of the $B\to D$ form factor, we obtain $ |V_{cb}|=(39.2\pm 0.4\,(\mathrm{stat.}) \pm 0.6\,(\mathrm{sys.}) \pm 0.5\,(\mathrm{th.})) \times 10^{-3}$.
Differential decay rate $d\Gamma/dw$ for $B \to D \ell \nu$ averaged over 4 modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.
Differential decay rates $d\Gamma/dw$ for individual $B \to D \ell \nu$ modes. The uncertainty listed represents the total uncertainty from statistical and systematic sources.
Correlations (stat.+syst.) between the $d\Gamma_i/dw$ bins for the averaged $B \rightarrow D \ell \nu$ spectrum (10x10). Element indices 0-9 correspond to $w$ bins: 0: [1.00, 1.06], 1: [1.06, 1.12], 2: [1.12, 1.18], 3: [1.18, 1.24], 4: [1.24, 1.30], 5: [1.30, 1.36], 6: [1.36, 1.42], 7: [1.42, 1.48], 8: [1.48, 1.54], 9: [1.54, 1.59]
A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
At the Large Hadron Collider, the $WbWb$ final state is expected to be dominated by $t\bar{t}$ production with a contribution from single-top processes. Differential cross-sections for $WbWb$ production in the dilepton decay channel are measured at the particle level as a function of various kinematic variables. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider over the period from 2015 to 2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. Measurements are performed within the fiducial phase-space defined by the presence of two $b$-jets and one electron and one muon of opposite charges. The differential cross-sections are corrected for detector effects and unfolded to the particle level. Results are compared with predictions from Monte Carlo event generators at next-to-leading order in perturbative quantum chromodynamics. These measurements provide valuable constraints on the modelling of $WbWb$ production and the interference between doubly resonant and singly resonant $WbWb$ production.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Exclusive:</i> <ul> <li> NLEP = 2, EMU, PT > 28 GeV, ABS ETA < 2.5 <li> NJETS >= 2, PT > 25 GeV, ABS ETA < 2.5 <li> NBJETS = 2 </ul><br/> <i>Inclusive:</i> <ul> <li> NLEP = 2, EMU, PT > 28 GeV, ABS ETA < 2.5 <li> NJETS >= 2, PT > 25 GeV, ABS ETA < 2.5 <li> NBJETS >= 2 </ul><br/> <b>Measurements:</b><br/> <i>Exclusive:</i><br/> Spectra: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 1">Table 1</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 4">Table 4</a> ) <li>SIG (<a href="159379?table=Table 7">Table 7</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 5">Table 5</a> ) <li>SIG (<a href="159379?table=Table 8">Table 8</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 3">Table 3</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 6">Table 6</a> ) <li>SIG (<a href="159379?table=Table 9">Table 9</a> ) </ul><br/> <b>Particle level:</b><br/> <i>Inclusive:</i><br/> Spectra: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 10">Table 10</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 13">Table 13</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 16">Table 16</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 19">Table 19</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 22">Table 22</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 25">Table 25</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 28">Table 28</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 31">Table 31</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 34">Table 34</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 37">Table 37</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 40">Table 40</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 43">Table 43</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 46">Table 46</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 49">Table 49</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 52">Table 52</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 55">Table 55</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 58">Table 58</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 61">Table 61</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 64">Table 64</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 67">Table 67</a> ) <li>SIG (<a href="159379?table=Table 70">Table 70</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 14">Table 14</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 20">Table 20</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 26">Table 26</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 32">Table 32</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 38">Table 38</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 44">Table 44</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 50">Table 50</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 56">Table 56</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 59">Table 59</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 62">Table 62</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 65">Table 65</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 68">Table 68</a> ) <li>SIG (<a href="159379?table=Table 71">Table 71</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 12">Table 12</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 15">Table 15</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 18">Table 18</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 21">Table 21</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 24">Table 24</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 27">Table 27</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 30">Table 30</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 33">Table 33</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 36">Table 36</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 39">Table 39</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 42">Table 42</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 45">Table 45</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 48">Table 48</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 51">Table 51</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 54">Table 54</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 57">Table 57</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 60">Table 60</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 63">Table 63</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 66">Table 66</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 69">Table 69</a> ) <li>SIG (<a href="159379?table=Table 72">Table 72</a> ) </ul><br/> Inter-spectra data statistical covariances: <ul> <li>SIG (exclusive) versus DSIG/DM_BL_MINIMAX (exclusive) (<a href="159379?table=Table 73">Table 73</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 74">Table 74</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 75">Table 75</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 76">Table 76</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 77">Table 77</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 78">Table 78</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 79">Table 79</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 80">Table 80</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 81">Table 81</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 82">Table 82</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 83">Table 83</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 84">Table 84</a> ) <li>SIG (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 85">Table 85</a> ) <li>SIG (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 86">Table 86</a> ) <li>SIG (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 87">Table 87</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 88">Table 88</a> ) <li>SIG (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 89">Table 89</a> ) <li>SIG (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 90">Table 90</a> ) <li>SIG (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 91">Table 91</a> ) <li>SIG (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 92">Table 92</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 93">Table 93</a> ) <li>SIG (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 94">Table 94</a> ) <li>SIG (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 95">Table 95</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 96">Table 96</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 97">Table 97</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 98">Table 98</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 99">Table 99</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 100">Table 100</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 101">Table 101</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 102">Table 102</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 103">Table 103</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 104">Table 104</a> ) <li>SIG (inclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 105">Table 105</a> ) <li>DSIG/DMT_BB4L (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 106">Table 106</a> ) <li>DSIG/DPT_BB (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 107">Table 107</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 108">Table 108</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 109">Table 109</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 110">Table 110</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 111">Table 111</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 112">Table 112</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 113">Table 113</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 114">Table 114</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 115">Table 115</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 116">Table 116</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 117">Table 117</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 118">Table 118</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 119">Table 119</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 120">Table 120</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 121">Table 121</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 122">Table 122</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 123">Table 123</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 124">Table 124</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 125">Table 125</a> ) <li>DSIG/Dn_JETS (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 126">Table 126</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 127">Table 127</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 128">Table 128</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 129">Table 129</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 130">Table 130</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 131">Table 131</a> ) <li>SIG (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 132">Table 132</a> ) <li>SIG (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 133">Table 133</a> ) <li>SIG (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 134">Table 134</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 135">Table 135</a> ) <li>SIG (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 136">Table 136</a> ) <li>SIG (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 137">Table 137</a> ) <li>SIG (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 138">Table 138</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 139">Table 139</a> ) <li>SIG (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 140">Table 140</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 141">Table 141</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 142">Table 142</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 143">Table 143</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 144">Table 144</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 145">Table 145</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 146">Table 146</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 147">Table 147</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 148">Table 148</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 149">Table 149</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 150">Table 150</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 151">Table 151</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 152">Table 152</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 153">Table 153</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 154">Table 154</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 155">Table 155</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 156">Table 156</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 157">Table 157</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 158">Table 158</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 159">Table 159</a> ) <li>1/SIG*DSIG/DMT_BB4L (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 160">Table 160</a> ) <li>1/SIG*DSIG/DPT_BB (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 161">Table 161</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 162">Table 162</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 163">Table 163</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 164">Table 164</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 165">Table 165</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 166">Table 166</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 167">Table 167</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 168">Table 168</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 169">Table 169</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 170">Table 170</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 171">Table 171</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 172">Table 172</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 173">Table 173</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 174">Table 174</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 175">Table 175</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 176">Table 176</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 177">Table 177</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 178">Table 178</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 179">Table 179</a> ) <li>1/SIG*DSIG/Dn_JETS (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 180">Table 180</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 181">Table 181</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 182">Table 182</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 183">Table 183</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 184">Table 184</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 185">Table 185</a> ) </ul>
Absolute differential cross-section as a function of $m^{bl}_{minimax}$ at particle level in the exclusive topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections. The covariance matrices are evaluated using pseudo-experiments for data and MC statistical uncertainties, and added to the individual covariance matrices for the remaining uncertainties, as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the absolute differential cross-section as function of $m^{bl}_{minimax}$ at particle level in the exclusive topology, accounting for the data statistical uncertainties.
A search for nonresonant new physics phenomena in high-mass dilepton events produced in association with b-tagged jets is performed using proton-proton collision data collected in 2016$-$2018 by the CMS experiment at the CERN LHC, at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis considers two effective field theory models with dimension-six operators; involving four-fermion contact interactions between two leptons ($\ell\ell$, electrons or muons) and b or s quarks (bb$\ell\ell$ and bs$\ell\ell$). Two lepton flavor combinations (ee and $μμ$) are required and events are classified as having 0, 1, and $\geq$2 b-tagged jets in the final state. No significant excess is observed over the standard model backgrounds. Upper limits are set on the production cross section of the new physics signals. These translate into lower limits on the energy scale $Λ$ of 6.9 to 9.0 TeV in the bb$\ell\ell$ model, depending on model parameters, and on the ratio of energy scale and effective coupling, $Λ/g_*$, of 2.0 to 2.6 TeV in the bs$\ell\ell$ model. The latter represent the most stringent limits on this model to date. Lepton flavor universality is also tested by comparing the dielectron and dimuon mass spectra for different b-tagged jet multiplicities. No significant deviation from the standard model expectation of unity is observed.
Signal efficiencies with Full Run 2 dimuon channel for different bbll signal scenarios
Signal efficiencies with Full Run 2 dimuon channel for different bbll (destructive interference) signal scenarios
Signal efficiencies with Full Run 2 dimuon channel in 1b final state for different bbll signal scenarios
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.
Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).
$\xi$ distributions for different jet $p_T$ bins.
Several new physics models including versions of supersymmetry (SUSY) characterized by $R$-parity violation (RPV) or with additional hidden sectors predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for top squarks decaying to two top quarks and six additional light-flavor quarks or gluons are reported. The search employs a novel machine learning method for background estimation from control samples in data using decorrelated discriminators. The search is performed using events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No requirement is placed on the magnitude of the missing transverse momentum. The result is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to 138 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016$-$2018. The data are used to determine upper limits on the top squark pair production cross section in the frameworks of RPV and stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at 95% confidence level for RPV (stealth) SUSY scenarios.
Cutflows and signal efficiencies for the RPV SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
Cutflows and signal efficiencies for the Stealth SYY SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
Cutflows and signal efficiencies for the RPV SUSY model in the $1\ell$ channel corresponding to two values of $m_{\tilde{t}}$.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Summary of branching fraction.
Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.
The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.
This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.
Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.
Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.
Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.
A search for dark matter particles produced in association with a Higgs boson decaying into a pair of $\tau$ leptons is performed using data collected in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector. The analysis is based on a data set corresponding to an integrated luminosity of 101 fb$^{-1}$ collected in 2017$-$2018. No significant excess over the expected standard model background is observed. This result is interpreted within the frameworks of the 2HDM+a and baryonic Z$'$ benchmark simplified models. The 2HDM+a model is a type-II two-Higgs-doublet model featuring a heavy pseudoscalar with an additional light pseudoscalar. Upper limits at 95% confidence level are set on the product of the production cross section and the branching fraction for each of these two simplified models. Heavy pseudoscalar boson masses between 400 and 700 GeV are excluded for a light pseudoscalar mass of 100 GeV. For the baryonic Z$'$ model, a statistical combination is made with an earlier search based on a data set of 36 fb$^{-1}$ collected in 2016. In this model, Z$'$ boson masses up to 1050 GeV are excluded for a dark matter particle mass of 1 GeV.
Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2017 (upper left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.
Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2018 (upper right) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.
Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $\mu\tau_{h}$ final states in 2017 (center left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.