The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapidity-dependent difference ($\Delta v_2$) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, $v_2$) between $\mathrm{D}^0$ ($\mathrm{\bar{u}c}$) and $\overline{\mathrm{D}}^0$ ($\mathrm{u\bar{c}}$) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of $\Delta v_2$. The rapidity-averaged value is found to be $\langle\Delta v_2 \rangle =$ 0.001 $\pm$ 0.001 (stat) $\pm$ 0.003 (syst) in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the $\mathrm{D}^0$ and $\overline{\mathrm{D}}^0$ mesons $v_2$ and triangular flow coefficient ($v_3$) as functions of rapidity, transverse momentum ($p_\mathrm{T}$), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt $\mathrm{D}^0$ meson $v_2$ values is observed, while the $v_3$ is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry.
Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.
Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.
Prompt $D^0$ meson $v_2$ as a function of $p_T$ in PbPb collisions at $\sqrt{s_{NN}}=5.02~TeV$.
The first measurements of production cross sections of polarized same-sign W$^\pm$W$^\pm$ boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W$^\pm$W$^\pm$ scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on the production cross section for longitudinally polarized same-sign W$^\pm$W$^\pm$ boson pairs. The electroweak production of same-sign W$^\pm$W$^\pm$ boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.
Systematic uncertainties of the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$, and $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ cross section measurements in units of percent.
Expected yields from various SM processes and observed data events in WW SR. The combination of the statistical and systematic uncertainties is shown. The expected yields are shown with their best fit normalizations from the simultaneous fit for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ cross sections. The $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{T}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ yields are obtained from the $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ yield assuming the SM prediction for the ratio of the yields. The tVx background yield includes the contributions from tt$\mathrm{V}$ and tZq processes.
Measured fiducial cross sections for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$ processes, and for the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ processes for the helicity eigenstates defined in the WW center-of-mass frame. The combination of the statistical and systematic uncertainties is shown. $\mathcal{B}$ is the branching fraction for $\mathrm{W}\mathrm{W} \rightarrow \ell \nu \ell' \nu$. The fiducial region is defined by requiring two same-sign leptons with $p_{T}>20$, $|\eta|<2.5$, and $m_{ll}>20$, and two jets with $m_{jj}>500$ and $|\Delta \eta_{jj}|>2.5$. The jets at generator level are clustered from stable particles, excluding neutrinos, using the anti-kt clustering algorithm with R = 0.4, and are required to have $p_{T}>50$ and $|\eta|<4.7$. The jets within $\Delta R<0.4$ of the selected charged leptons are not included. The theoretical predictions including the $\mathcal{O}(\alpha_{s}\alpha^6)$ and $\mathcal{O}(\alpha^7)$ corrections to the \MGvATNLO LO cross sections, as described in arXiv:2009.09429, are also shown. The theoretical uncertainties include statistical, PDF, and LO scale uncertainties.
Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of transverse momenta for $|y_{lab}|< 1$, with $N^{offline}_{trk} \geq 100$ in pp collisions at 13 TeV.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 2$ < p_{T} < $4 GeV in pp collisions at 13 TeV.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 4$ < p_{T} < $6 GeV in pp collisions at 13 TeV.
We report a measurement of the $\pi^-$ photoproduction beam asymmetry for the reaction $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $\Sigma$ is measured as a function of four-momentum transfer $t$ to the $\Delta^{++}$ and compared to phenomenological models. We find that $\Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.
Beam asymmetry $\Sigma$ vs. $|t|$ compared to theoretical predictions. The uncertainty on $|t|$ is the rms of values in the $\Delta^{++}$ signal region. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 1.5% on the magnitude of $\Sigma$.
Evidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, recorded by the CMS experiment at the CERN LHC. An excess of events over the background expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at $\sqrt{s} =$ 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb$^{-1}$, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19 $^{+0.40}_{-0.39}$ (stat) $^{+0.15}_{-0.14}$ (syst). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.
The observed DNN output distribution in the VBF-SR region for data collected in 2016 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.
The observed DNN output distribution in the VBF-SR region for data collected in 2017 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.
The observed DNN output distribution in the VBF-SR region for data collected in 2018 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.
The production of Z boson pairs in proton-proton (pp) collisions, pp $\to$ (Z/$\gamma^*$)(Z/$\gamma^*$) $\to$ 2$\ell$ 2$\ell'$, where $\ell,\ell'$ = e or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected during 2016-2018. The ZZ production cross section, $\sigma_{\text{tot}}$ (pp $\to$ ZZ) = 17.2 $\pm$ 0.3 (stat) $\pm$ 0.5 (syst) $\pm$ 0.4 (theo) $\pm$ 0.3 (lumi) pb, measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60 $\lt$ $m_{\ell^+\ell^-}$ $\lt $ 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT for all leptons in the event
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT for all Z bosons in the event
Differential cross sections normalized to the fiducial cross section for the combined 4e, 2e2µ, and 4µ decay channels as a function of pT of the ZZ system
A measurement of the W$^+$W$^-$ boson pair production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data used in this study are collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The W$^+$W$^-$ candidate events are selected by requiring two oppositely charged leptons (electrons or muons). Two methods for reducing background contributions are employed. In the first one, a sequence of requirements on kinematic quantities is applied allowing a measurement of the total production cross section: 117.6 $\pm$ 6.8 pb, which agrees well with the theoretical prediction. Fiducial cross sections are also reported for events with zero or one jet, and the change in the zero-jet fiducial cross section with the jet transverse momentum threshold is measured. Normalized differential cross sections are reported within the fiducial region. A second method for suppressing background contributions employs two random forest classifiers. The analysis based on this method includes a measurement of the total production cross section and also a measurement of the normalized jet multiplicity distribution in W$^+$W$^-$ events. Finally, a dilepton invariant mass distribution is used to probe for physics beyond the standard model in the context of an effective field theory, and constraints on the presence of dimension-6 operators are derived.
Summary of cross sections obtained in the sequential cut analysis. The uncertainty listed is the total uncertainty obtained from the fit to the yields. Same flavor, SF, and different flavor, DF, cross sections are given.
Measured fraction of events after unfolding for $N_J = 0, 1, \geq 2$ jets. The first uncertainty is statistical and the second combines systematic uncertainties from the response matrix and from the background subtraction.
Expected and observed 68% and 95% confidence intervals on the measurement of the Wilson coefficients associated with the three CP-preserving, dimension-6 operators.
A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak W$\gamma$jj production in a restricted fiducial region is measured as 20.4 $\pm$ 4.5 fb and the total cross section for W$\gamma$ production in association with 2 jets in the same fiducial region is 108 $\pm$ 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.
The measured EW W$\gamma$jj fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section is 17.0 fb.
The measured W$\gamma$jj cross section, combining the EW and QCD-induced production mechanisms. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The QCD W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.4.2 at NLO in QCD. Within the acceptance, the theoretical cross section of QCD W$\gamma$jj is 72.7 fb. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section of EW W$\gamma$jj is 17.0 fb. The total EW+QCD W$\gamma$ jj cross section is the sum of the two processes.
Constraints on dimension-8 effective field theory operators.
A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.
Measured values of the trigger efficiencies for events with $\HT > 1350\GeV$. The uncertainties are statistical only.
Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).
Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).
A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on the final state with two light leptons (electrons or muons) of different flavour and charge combinations, with at least two jets and large missing transverse momentum. No significant excess over the Standard Model expectation is observed. The results are translated into exclusion limits on heavy-lepton masses, and the observed lower limit on the mass of the type-III seesaw heavy leptons is 790 GeV at 95% confidence level.
Cross-sections of the type-III seesaw process for mass points used in the analysis. Branching ratios into at least two leptons are presented with the corresponding effective cross-section.
Expected and observed 95 % CLs exclusion limits for the type-III seesaw process with the corresponding one- and two-standard-deviation bands, showing the 95 % CL upper limit on the cross-section.
Selection efficiencies in percentage relative to the events with at least two leptons for signal mass points used in the analysis. The efficiency is defined as the ratio of expected signal events in a signal region compared with the number of expected events produced, for integrated luminosity 139 fb$^{-1}$.