The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.
Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +2.1 < eta^dijet < +2.8.
Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +1.2 < eta^dijet < +2.1.
Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +0.8 < eta^dijet < +1.2.
The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range $134-277$ GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the $\eta - \phi$ plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies $E^{jet}_T>14$ GeV are presented. The jet shape broadens as the jet pseudorapidity ($\eta^{jet}$) increases and narrows as $E^{jet}_T$ increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high $\eta^{jet}$ and low $E^{jet}_T$. The observed broadening of the jet shape as $\eta^{jet}$ increases is consistent with the predicted increase in the fraction of final state gluon jets.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.