This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Observed and expected 95% CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125 GeV. The expected limit, along with its associated ±1σ and ±2σ bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.
A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
The production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138 fb$^{-1}$. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first $\mathrm{t\bar{t}t\bar{t}}$ measurement that includes the all-hadronic final state. The observed significance of the $\mathrm{t\bar{t}t\bar{t}}$ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for $\mathrm{t\bar{t}t\bar{t}}$ production, with a measured cross section of 36 $^{+12}_{-11}$ fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17 $\pm$ 4 (stat) $\pm$ 3 (syst) fb, which is consistent with the standard model prediction.
The jet multiplicity for $N_\textrm{b} \geq 4$ in the opposite-sign dilepton channel for the combined 2017--2018 dataset with dilepton decay categories combined. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit.
The distribution of the BDT discriminants for the 2016--2018 data set for three different categories in the combined single-electron and single-muon channels. The three categories are defined by the number of resolved t tags ($N_\textrm{RT}$), b tags ($N_\textrm{b}$), and jets ($N_\textrm{j}$), selected as representative based on their sensitivity to signal. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, while $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson. The TOP grouping contains single top quark production along with the other $\textrm{t}\bar{\textrm{t}}$ processes not explicitly shown, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit. While the bins are shown to be equal width, they do not correspond to equal width in BDT value.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The sample VR category shown is defined by $N_\textrm{RT}=1$, $N_\textrm{BT} \geq 1$, $H_T > 1400$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty.
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.
Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.
Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.
Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.
Evidence is reported for electroweak (EW) vector boson scattering in the decay channel $\ell\nu$qq of two weak vector bosons WV (V = W or Z), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13 TeV collected with the CMS detector during 2016-2018 with an integrated luminosity of 138 fb$^{-1}$. Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Z boson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta $p_\mathrm{T}$$\gt$ 10 GeV and at least one pair of outgoing partons with invariant mass $m_\mathrm{qq}$$\gt$ 100 GeV. The measured and expected EW WV production cross sections are 1.90 $^{+0.53}_{-0.46}$ pb and 2.23 $^{+0.08}_{-0.11}$ (scale) $\pm$ 0.05 (PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is $m_\mathrm{EW}$ = 0.85 $\pm$ 0.12 (stat) $^{+0.19}_{-0.17}$ (syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected, and it is measured keeping the quantum chromodynamics (QCD) associated diboson production fixed to the standard model prediction. This is the first evidence of vector boson scattering in the $\ell\nu$qq decay channel at LHC. The simultaneous measurement of the EW and QCD associated diboson production agrees with the standard model prediction.
Expected and observed cross sections for EW and EW+QCD WV production in association with 2 jets. Two separate maximum likelihood fits are performed: the measurement of the purely EW signal strength μ_EW keeping the QCD WV production contribution fixed to the SM prediction μQCD = 1; the measurement of the signal strength considering as signal the EW and QCD WV processes together.
Invariant mass of the pair of the VBS tag jets in the resolved category. The last bin contains overflow events.
Invariant mass of the pair of the VBS tag jets in the boosted category. The last bin contains overflow events.
This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb$^{-1}$. Higgs bosons decaying into $b\bar{b}$ are reconstructed as single large-radius jets recoiling against a hadronic system and identified by the experimental signature of two $b$-hadron decays. The experimental techniques are validated in the same kinematic regime using the $Z\rightarrow b\bar{b}$ process.The 95$\% $ confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Standard Model cross sections:</b> <a href="102183?table=SMcrosssections">table</a><br/><br/> <b>Cutflow ggF:</b> <a href="102183?table=CutflowggF">table</a><br/><br/> <b>Cutflow VBF:</b> <a href="102183?table=CutflowVBF">table</a><br/><br/> <b>Cutflow VH:</b> <a href="102183?table=CutflowVH">table</a><br/><br/> <b>Cutflow ttH:</b> <a href="102183?table=CutflowttH">table</a><br/><br/> <b>Production mode fractional contributions::</b> <a href="102183?table=Fractionalcontribution">table</a><br/><br/> <b>Acceptance times efficiency - fiducial:</b> <a href="102183?table=Acceptancetimesefficiency-fiducial">table</a><br/><br/> <b>Acceptance times efficiency - differential:</b> <a href="102183?table=Acceptancetimesefficiency-differential">table</a><br/><br/> <b>Yield table - fiducial:</b> <a href="102183?table=Eventyields-fiducial">table</a><br/><br/> <b>Yield table - differential:</b> <a href="102183?table=Eventyields-differential">table</a><br/><br/>
Predicted Higgs boson production cross sections within fiducial volumes obtained from the four production mode MC samples (ggF, VBF, VH, and ttH) described in Section 3 with and without higher order electroweak (EW) corrections. All μH values reported are with respect to cross section with EW corrections.
The efficiency for simulated ggF events to pass each analysis cut.
We present measurements of the differential production cross sections of the inclusive $J/\psi$ meson as a function of transverse momentum ($p_{T}^{J/\psi}$) using the $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the $\mu^{+}\mu^{-}$ channel is for 0 $< p_{T}^{J/\psi} <$ 9 GeV/$c$ and rapidity range $|y^{J/\psi}| < $ 0.4, and that from the $e^{+}e^{-}$ channel is for 4 $< p_{T}^{J/\psi} <$ 20 GeV/$c$ and $|y^{J/\psi}| < $ 1.0. The $\psi(2S)$ to $J/\psi$ ratio is also measured for 4 $< p_{T}^{\rm meson} <$ 12 GeV/$c$ through the $e^{+}e^{-}$ decay channel. Model calculations, which incorporate different approaches toward the $J/\psi$ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties. A more discriminating comparison to theoretical models at low $p_T$ can be performed in the future, if the calculations are carried out within our fiducial volume, eliminating the uncertainty due to the $J/\psi$ polarization.
'fiducial cross sections multiplied by the branching ratio as a function of $J/\Psi$ $p_T$'
'full cross sections multiplied by the branching ratio as a function of $J/\Psi$ $p_T$ '
'fiducial cross sections multiplied by the branching ratio as a function of $J/\Psi$ $p_T$ '
A measurement of the $t$-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+je ts channel is presented, using 3.2 fb$^{-1}$ of proton--proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be $b$-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma(tq) = 156 \pm 5 \, (\mathrm{stat.}) \pm 27 \, (\mathrm{syst.}) \pm 3\,(\mathrm{lumi.})$ pb for single top-quark production and $\sigma(\bar{t}q) = 91 \pm 4 \, (\mathrm{stat.}) \pm 18 \, (\mathrm{syst.}) \pm 2\,(\mathrm{lumi.})$ pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be $R_t = \sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})$.
Predicted and observed event yields for the signal region. The quoted uncertainties include uncertainties in the theoretical cross-sections, in the number of multijet events, and the statistical uncertainties. The event yield of the $W^+ + $jets process in the $\ell^-$ channel is reported to be $<1$ in the paper. To provide a numerical value for this table in HEPdata, the yield is approximated with $1\pm 1$. The same is done for the event yield of the $W^- + $jets process in the $\ell^+$ channel.
Estimated scale factors, $\hat{\beta}$, and number of events, $\hat{\nu}=\hat{\beta}\cdot\nu$, for the $\ell^+$ and $\ell^-$ channel from the minimisation of the likelihood function. The quoted uncertainties in $\hat{\beta}$ and $\hat{\nu}$ include the statistical uncertainty and the uncertainties from the constraints on the background normalisation as used in the likelihood function.
Measured total cross sections of single top-quark and single top-antiquark production and their ratio $R_t$. In addition, the sum of top-quark and top-antiquark production is provided as well. Based on the total cross section the value of $f_\mathrm{LV}\cdot |V_{tb}|$ is determined.