Results are presented of a search for any particle(s) decaying to six or more jets in association with missing transverse momentum. The search is performed using 1.34 fb^-1 of sqrt(s)=7 TeV proton-proton collisions recorded by the ATLAS detector during 2011. Data-driven techniques are used to determine the backgrounds in kinematic regions that require at least six, seven or eight jets, well beyond the multiplicities required in previous analyses. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a supersymmetry model (MSUGRA/CMSSM) where they extend previous constraints.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 6 jets each having PT > 55 GeV.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 5 jets each having PT > 80 GeV.
Observed and predicted jet multiplicity distribution for jets with PT > 55 Gev in the ET(C=MISSING)/SQRT(HT) region 1.5-2 GeV.
Measurements of jet production rates in association with W and Z bosons for jet transverse momenta above 30 GeV are reported, using a sample of proton-proton collision events recorded by CMS at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns. The study includes the measurement of the normalized inclusive rates of jets sigma(V + >= n jets)/sigma(V), where V represents either a W or a Z. In addition, the ratio of W to Z cross sections and the W charge asymmetry as a function of the number of associated jets are measured. A test of Berends--Giele scaling at sqrt(s) = 7 TeV is also presented. The measurements provide a stringent test of perturbative-QCD calculations and are sensitive to the possible presence of new physics. The results are in agreement with the predictions of a simulation that uses explicit matrix element calculations for final states with jets.
The ratio of the cross section for W+ n jet production over the cross section for W production in the electron channel.
The ratio of the cross section for W+ n jet production over the cross section for W production in the muon channel.
The ratio of the cross section for Z+ n jet production over the cross section for Z production in the electron channel.
Results of three searches are presented for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons, e or mu. The analysis uses a data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of 1 fb^-1 of sqrt{s} = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Opposite-sign and same-sign dilepton events are separately studied, with no deviations from the Standard Model expectation observed. Additionally, in opposite- sign events, a search is made for an excess of same-flavour over different-flavour lepton pairs. Effective production cross sections in excess of 9.9 fb for opposite-sign events containing supersymmetric particles with missing transverse momentum greater than 250 GeV are excluded at 95% CL. For same-sign events containing supersymmetric particles with missing transverse momentum greater than 100 GeV, effective production cross sections in excess of 14.8 fb are excluded at 95% CL. The latter limit is interpreted in a simplified weak gaugino production model excluding chargino masses up to 200 GeV.
The dilepton invariant mass distribution for same-sign dileptons.
The missing-mass ET distribution for same-sign dilepton events before any jet requirement.
The missing-mass ET distribution for same-sign dilepton events after requiring two high-pt jets.
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 inverse picobarns is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference, $\Delta(\phi)$, less than approximately 2.8.
Integrated diphoton cross sections.
Measured diphoton differential cross sections as a function of the diphoton mass for the two pseusdorapidity ranges.
Measured diphoton differential cross sections as a function of the diphoton transverse momentum for the two pseusdorapidity ranges.
A search is presented for a high mass neutral particle that decays directly to the emu final state. The data sample was recorded by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb^-1. The data are found to be consistent with the Standard Model background. The high emu mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.
Observed and predicted E-MU invariant mass distributions.
Observed and predicted electron PT distributions.
Observed and predicted muon PT distributions.
The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.
The DY spectrum normalized to the Z0 region and to the mass bin widths.
The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.
The measured prompt photon production spectra in the two |eta| regions, 0.0-0.9 and 0.9-1.44.
The measured prompt photon production spectra in the two |eta| regions, 1.57-2.1 and 2.1-2.5.
A measurement of inclusive W and Z production cross sections in pp collisions at sqrt(s)=7 TeV is presented. The electron and muon decay channels are analyzed in a data sample collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 inverse picobarns. The measured inclusive cross sections are sigma(pp-> WX) B(W-> l nu) = 10.30 +/- 0.02 (stat.) +/- 0.10 (syst.) +/- 0.10 (th.) +/- 0.41 (lumi.) nb and sigma(pp -> ZX) B(Z-> l^+l^-) = 0.974 +/- 0.007 (stat.) +/- 0.007 (syst.) +/- 0.018 (th.) +/- 0.039 (lumi.) nb, limited to the dilepton invariant mass range 60 to 120 GeV. The luminosity-independent cross section ratios are [sigma(pp->WX) B(W-> l nu)]/[sigma(pp-> ZX) B(Z->l^+l^-)] = 10.54 +/- 0.07 (stat.) +/- 0.08 (syst.) +/- 0.16 (th.) and [sigma(pp->W^+X) B(W^+ -> l^+nu)] / [sigma(pp->W^- X) B(W^- -> l^- nu)] = 1.421 +/- 0.006 (stat.) +/- 0.014 (syst.) +/- 0.029 (th.). The measured values agree with next-to-next-to-leading order QCD cross section calculations based on recent parton distribution functions.
Measured cross sections for combined positive and negative W production.
Measured cross sections for positive W production.
Measured cross sections for negative W production.
The cross-section for inclusive phi meson production in pp collisions at a centre-of-mass energy of sqrt(s) = 7 TeV has been measured with the LHCb detector at the Large Hadron Collider. The differential cross-section is measured as a function of the phi transverse momentum p_T and rapidity y in the region 0.6 < p_T < 5.0 GeV/c and 2.44 < y < 4.06. The cross-section for inclusive phi production in this kinematic range is sigma(pp -> phi X) = 1758 pm 19(stat) ^{+43}_{-14}(syst) pm 182(scale) microbarn, where the first systematic uncertainty depends on the p_T and y region and the second is related to the overall scale. Predictions based on the Pythia 6.4 generator underestimate the cross-section.
Integrated PHI production cross section in the observed kinematic region.
Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.44-2.62 and 2.62-2.80.
Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.80-2.98 and 2.98-3.16.