Date

Charge correlations using the balance function in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 723 (2013) 267-279, 2013.
Inspire Record 1211186 DOI 10.17182/hepdata.60298

In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity ($\Delta\eta$) and azimuthal angle ($\Delta\varphi$) in Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in $\Delta\varphi$ but fails to describe the correlations in $\Delta\eta$. A thermal blast-wave model incorporating local charge conservation and tuned to describe the $p_{\rm T}$ spectra and v$_2$ measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with $\sqrt{s_{\rm NN}}$: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in $\Delta\eta$ and $\Delta\varphi$ with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy--ion collision.

8 data tables

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 0-5%. Also shown in the second column is the result from the mixed data set.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 30-40%.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 70-80%.

More…

Measurement of the inclusive differential jet cross section in pp collisions at sqrt{s} = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 722 (2013) 262-272, 2013.
Inspire Record 1210881 DOI 10.17182/hepdata.60430

The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

2 data tables

Inclusive differential jet cross section for R=0.2 and R=0.4.

Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.


Measurement of the differential cross sections for isolated direct photon pair production in $p \bar p$ collisions at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 725 (2013) 6-14, 2013.
Inspire Record 1215307 DOI 10.17182/hepdata.60556

We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.

10 data tables

The measured differential distribution in the two-photon mass;.

The measured differential distribution in the two-photon transverse momentum;.

The measured differential distribution in the azimuthal angular separation of the two photons;.

More…

Measurement of the Sigma pi photoproduction line shapes near the Lambda(1405)

The CLAS collaboration Moriya, K. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 87 (2013) 035206, 2013.
Inspire Record 1215598 DOI 10.17182/hepdata.61398

The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma+ pi-, Sigma- pi+ and Sigma0 pi0 final states, from threshold at 1328 MeV/c^2 through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 \Lambda(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the Sigma0(1385) and from K^* Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NKbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J^P = 1/2^- amplitude with a centroid at 1394\pm20 MeV/c^2 and a second I=1 amplitude at 1413\pm10 MeV/c^2. The centroid of the I=0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

9 data tables

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 1.95 to 2.05 GeV corresponding to incident photon energies from 1.56 to 1.77 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.05 to 2.15 GeV corresponding to incident photon energies from 1.77 to 1.99 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.15 to 2.25 GeV corresponding to incident photon energies from 1.99 to 2.23 GeV.

More…

Measurement of the ratio of differential cross sections {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet) in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 87 (2013) 092010, 2013.
Inspire Record 1210034 DOI 10.17182/hepdata.61314

We measure the ratio of cross sections, {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet), for associated production of a Z boson with at least one jet. The ratio is also measured as a function of the jet transverse momentum, jet pseudorapidity, Z boson transverse momentum, and the azimuthal angle between the Z boson and the closest jet for events with at least one b jet. These measurements use data collected by the D0 experiment in Run II of Fermilab's Tevatron ppbar Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of 9.7 fb$^{-1}$. The results are compared to predictions from next-to-leading order calculations and various Monte Carlo event generators.

4 data tables

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the jet transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the Z0 transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the JET pseudorapidity.

More…

Precision measurement of charged pion and kaon multiplicities in electron-positron annihilation at Q = 10.52 GeV

The Belle collaboration Leitgab, M. ; Seidl, R. ; Grosse Perdekamp, M. ; et al.
Phys.Rev.Lett. 111 (2013) 062002, 2013.
Inspire Record 1216515 DOI 10.17182/hepdata.62276

Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.

1 data table

Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).


Event shapes and azimuthal correlations in Z + jets events in pp collisions at sqrt(s) =7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 238-261, 2013.
Inspire Record 1209721 DOI 10.17182/hepdata.75374

Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

18 data tables

Normalized DPhi(Z, j1) distributions for Njets >= 1.

Normalized DPhi(Z, j1) distributions for Njets >= 2.

Normalized DPhi(Z, j1) distributions for Njets >= 3.

More…

Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

342 data tables

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

More…

Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

99 data tables

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

More…

System Size Dependence of Transverse Momentum Correlations at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 87 (2013) 064902, 2013.
Inspire Record 1216565 DOI 10.17182/hepdata.103060

We present a study of the average transverse momentum ($p_t$) fluctuations and $p_t$ correlations for charged particles produced in Cu+Cu collisions at midrapidity for $\sqrt{s_{NN}} =$ 62.4 and 200 GeV. These results are compared with those published for Au+Au collisions at the same energies, to explore the system size dependence. In addition to the collision energy and system size dependence, the $p_t$ correlation results have been studied as functions of the collision centralities, the ranges in $p_t$, the pseudorapidity $\eta$, and the azimuthal angle $\phi$. The square root of the measured $p_t$ correlations when scaled by mean $p_t$ is found to be independent of both colliding beam energy and system size studied. Transport-based model calculations are found to have a better quantitative agreement with the measurements compared to models which incorporate only jetlike correlations.

17 data tables

Event-by-event $\langle p_{t}\rangle$ distributions for data and mixed events in central Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 and 62.4 GeV.

Comparison of dynamical $\langle p_{t}\rangle$ fluctuations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV as a function of the number of participanting nucleons.

Comparison of dynamical $\langle p_{t}\rangle$ fluctuations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV as a function of the number of participanting nucleons.

More…