Date

Collaboration Reset

Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\mathbf{\sqrt{\textit s}}$ = 13 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 319-329, 2016.
Inspire Record 1395253 DOI 10.17182/hepdata.70847

The pseudorapidity ($\eta$) and transverse-momentum ($p_{\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\eta|<$ 0.5 is 5.31 $\pm$ 0.18 and 6.46 $\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\rm T}$ $<$ 20 GeV/c and $|\eta|<$ 0.8 for events with at least one charged particle in $|\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

0 data tables match query

Production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 245, 2016.
Inspire Record 1418181 DOI 10.17182/hepdata.72720

The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) mesons has been measured in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. K$^{*0}$ and $\phi$ are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range $-0.5 < y <0$. The transverse momentum spectra, measured as a function of the multiplicity, have p$_{\mathrm{T}}$ range from 0 to 15 GeV/$c$ for K$^{*0}$ and from 0.3 to 21 GeV/$c$ for $\phi$. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at $\sqrt{s}$ = 7 TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. In Pb-Pb and p-Pb collisions, K$^{*0}$ and $\phi$ probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-$\phi$ ratio are discussed as a function of the multiplicity of the event. The short-lived K$^{*0}$ is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.

0 data tables match query

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222302, 2016.
Inspire Record 1410589 DOI 10.17182/hepdata.73052

The pseudorapidity density of charged particles ($\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV. It increases with centrality and reaches a value of $1943 \pm 54$ in $|\eta|<0.5$ for the 5% most central collisions. A rise in $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of $\sqrt{s_{\rm NN}}$ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of the average number of participant nucleons, ${\langle N_\mathrm{part} \rangle}$, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ from $\sqrt{s_{\rm NN}}$ = 2.76 TeV to $\sqrt{s_{\rm NN}}$ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

0 data tables match query

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

0 data tables match query