The production yield of prompt D mesons and their elliptic flow coefficient $v_2$ were measured with the Event-Shape Engineering (ESE) technique applied to mid-central (10-30% and 30-50% centrality classes) Pb-Pb collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} =5.02$ TeV, with the ALICE detector at the LHC. The ESE technique allows the classification of events, belonging to the same centrality, according to the azimuthal anisotropy of soft particle production in the collision. The reported measurements give the opportunity to investigate the dynamics of charm quarks in the Quark-Gluon Plasma and provide information on their participation in the collective expansion of the medium. D mesons were reconstructed via their hadronic decays at mid-rapidity, $|\eta|<0.8$, in the transverse momentum interval $1
A measurement of inclusive, prompt, and non-prompt ${\rm J}/\psi$ production in p$-$Pb collisions at a nucleon$-$nucleon centre-of-mass energy $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented. The inclusive ${\rm J}/\psi$ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum $p_{\rm T} = 0$. The inclusive ${\rm J}/\psi$ nuclear modification factor $R_{\rm pPb}$ is calculated by comparing the new results in p$-$Pb collisions to a recently measured proton$-$proton reference at the same centre-of-mass energy. Non-prompt ${\rm J}/\psi$ mesons, which originate from the decay of beauty hadrons, are separated from promptly produced ${\rm J}/\psi$ on a statistical basis for $p_{\rm T}$ larger than 1.0 GeV/$c$. These results are based on the data sample collected by the ALICE detector during the 2016 LHC p$-$Pb run, corresponding to an integrated luminosity ${\cal L}_{\rm int} = 292 \pm 11 \; {\rm \mu b}^{-1}$, which is six times larger than the previous publications. The total uncertainty on the $p_{\rm T}$-integrated inclusive ${\rm J}/\psi$ and non-prompt ${\rm J}/\psi$ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and $R_{\rm pPb}$ are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt ${\rm J}/\psi$ production cross section, the ${\rm b\overline{b}}$ production cross section at midrapidity, $\mathrm{d}\sigma_{\rm b\overline{b}}/\mathrm{d}y$, and the total cross section extrapolated over full phase space, $\sigma_{\rm b\overline{b}}$, are derived.
This article presents groomed jet substructure measurements in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. The Soft Drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, $z_{\rm g}$, and the (scaled) groomed jet radius, $\theta_{\rm g}$. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameters $R = 0.2$ and $R = 0.4$. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the $\theta_{\rm g}$ distribution in Pb$-$Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark$-$gluon plasma. No significant modification of the $z_{\rm g}$ distribution in Pb$-$Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark$-$gluon plasma.
The polarization of the $\Lambda$ and $\overline\Lambda$ hyperons along the beam ($z$) direction, $P_{\rm z}$, has been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to $P_{\rm z}$ comes from elliptic flow induced vorticity and can be characterized by the second Fourier sine coefficient $P_{\rm z,s2} = \langle P_{\rm z} \sin(2\varphi - 2 \Psi_{\rm 2}) \rangle$, where $\varphi$ is the hyperon azimuthal emission angle, and $\Psi_{\rm 2}$ is the elliptic flow plane angle. We report the measurement of $P_{\rm z,\,{\rm s2}}$ for different collision centralities, and in the 30-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The $P_{\rm z,\,{\rm s2}}$ is positive similarly as measured by the STAR Collaboration in Au-Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV, with somewhat smaller amplitude in the semi-central collisions. This is the first experimental evidence of a non-zero hyperon $P_{\rm z}$ in Pb-Pb collisions at the LHC. The comparison of the measured $P_{\rm z,\,{\rm s2}}$ with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase.
The production of J/$\psi$ is measured at midrapidity ($|y|<0.9$) in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV, through the dielectron decay channel, using the ALICE detector at the Large Hadron Collider. The data sets used for the analyses correspond to integrated luminosities of $\mathcal{L}_{\rm int}$ = 19.4 $\pm$ 0.4 nb$^{-1}$ and $\mathcal{L}_{\rm int}$ = 32.2 $\pm$ 0.5 nb$^{-1}$ at $\sqrt{s}$ = 5.02 and 13 TeV, respectively. The fraction of non-prompt J/$\psi$ mesons, i.e. those originating from the decay of beauty hadrons, is measured down to a transverse momentum $p_{\rm T}$ = 2 GeV/$c$ (1 GeV/$c$) at $\sqrt{s}$ = 5.02 TeV (13 TeV). The $p_{\rm T}$ and rapidity ($y$) differential cross sections, as well as the corresponding values integrated over $p_{\rm T}$ and $y$, are carried out separately for prompt and non-prompt J/$\psi$ mesons. The results are compared with measurements from other experiments and theoretical calculations based on quantum chromodynamics (QCD). The shapes of the $p_{\rm T}$ and $y$ distributions of beauty quarks predicted by state-of-the-art perturbative QCD models are used to extrapolate an estimate of the $\rm b\overline{b}$ pair cross section at midrapidity and in the total phase space. The total $\rm b\overline{b}$ cross sections are found to be $\sigma_{\rm b \overline{\rm b}} = 541 \pm 45 (\rm stat.) \pm 69 (\rm syst.)_{-12}^{+10} (\rm extr.)~{\rm \mu b}$ and $\sigma_{\rm b \overline{\rm b}}~=~218 \pm 37 (\rm stat.) \pm 31 (\rm syst.)_{-9.1}^{+8.2} (\rm extr.)~{\rm \mu b}$ at $\sqrt{s}$ = 13 and 5.02 TeV, respectively. The value obtained from the combination of ALICE and LHCb measurements in pp collisions at $\sqrt{s}$ = 13 TeV is also provided.
The production yield and angular anisotropy of prompt ${D_s^+}$ mesons were measured as a function of transverse momentum ($p_{ T}$) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{ NN}} = 5.02$ TeV collected with the ALICE detector at the LHC. ${D_s^+}$ mesons and their charge conjugates were reconstructed at midrapidity ($|y|<0.5$) from their hadronic decay channel ${D_s^+ \to \phi \pi^+}$, with ${\phi \to K^-K^+}$, in the $p_{ T}$ intervals $2
The production of $\pi^\pm$, ${\rm K}^\pm$, and $(\overline{\rm p})$p is measured in pp collisions at $\sqrt{s}=13$ TeV in different topological regions. Particle transverse momentum ($p_{\rm T}$) spectra are measured in the ``toward'', ``transverse'', and ``away'' angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, $R_{\rm T}=N_{\rm T}/\langle N_{\rm T}\rangle$, is used to group events according to their UE activity, where $N_{\rm T}$ is the measured charged-particle multiplicity per event in the transverse region and $\langle N_{\rm T}\rangle$ is the mean value over all the analysed events. The first measurements of identified particle $p_{\rm T}$ spectra as a function of $R_{\rm T}$ in the three topological regions are reported. The yield of high transverse momentum particles relative to the $R_{\rm T}$-integrated measurement decreases with increasing $R_{\rm T}$ in both the toward and away regions, indicating that the softer UE dominates particle production as $R_{\rm T}$ increases and validating that $R_{\rm T}$ can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing $R_{\rm T}$. This hardening follows a mass ordering, being more significant for heavier particles. The $p_{\rm T}$-differential particle ratios $({\rm p+\overline{p}})/(\pi^+ +\pi^-)$ and $({\rm K^+ +K^-})/(\pi^+ +\pi^-)$ in the low UE limit $(R_{\rm T}\rightarrow 0)$ approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce ${\rm e^+ e^-}$ results.
The fractions of non-prompt (i.e. originating from beauty-hadron decays) D$^0$ and D$^+$ mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum ($p_{\rm T}$) and integrated in the range $1 < p_{\rm T} < 24$ GeV/$c$. The fraction of non-prompt D$^0$ and D$^+$ mesons is found to increase slightly as a function of $p_{\rm T}$ in all the measured multiplicity intervals, while no significant dependence on the charged-particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion.
The measurements of the inclusive J/$\psi$ yield at midrapidity ($\left | y \right | < 0.9$) and forward rapidity (2.5 $< y <$ 4) in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC are reported. The inclusive J/$\psi$ production yields and nuclear modification factors, $R_{\rm AA}$, are measured as a function of the collision centrality, J/$\psi$ transverse momentum ($p_{\rm T}$), and rapidity. The J/$\psi$ average transverse momentum and squared transverse momentum ($\langle p_{\mathrm{T}}\rangle$ and $\langle p_{\mathrm{T}}^{\mathrm{2}}\rangle$) are evaluated as a function of the centrality at midrapidity. Compared to the previous ALICE publications, here the entire Pb$-$Pb collisions dataset collected during the LHC Run 2 is used, which improves the precision of the measurements and extends the $p_{\rm T}$ coverage. The $p_{\rm T}$-integrated $R_{\rm AA}$ shows a hint of an increasing trend towards unity from semicentral to central collisions at midrapidity, while it is flat at forward rapidity. The $p_{\rm T}$-differential $R_{\rm AA}$ shows a strong suppression at high $p_{\rm T}$ with less suppression at low $p_{\rm T}$ where it reaches a larger value at midrapidity compared to forward rapidity. The ratio of the $p_{\rm T}$-integrated yields of J/$\psi$ to those of D$^{0}$ mesons is reported for the first time for the central and semicentral event classes at midrapidity. Model calculations implementing charmonium production via the coalescence of charm quarks and antiquarks during the fireball evolution (transport models) or in a statistical approach with thermal weights are in good agreement with the data at low $p_{\rm T}$. At higher $p_{\rm T}$, the data are well described by transport models and a model based on energy loss in the strongly-interacting medium produced in nuclear collisions at the LHC.
The production of J/$\psi$ is measured as a function of charged-particle multiplicity at forward rapidity in proton$-$proton (pp) collisions at center-of-mass energies $\sqrt{s} =$ 5.02 and 13 TeV. The J/$\psi$ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 $< y <$ 4.0), whereas the charged-particle multiplicity density (${\rm d}N_{\rm{ch}}/{\rm d}\eta$) is measured at midrapidity $(|\eta| < 1)$. The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (${{\rm d}N_{\rm ch}/{\rm d}\eta}/{\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle}$), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum ($\langle p_{\mathrm{T}}\rangle$) of J/$\psi$ in pp collisions exhibits an increasing trend as a function of ${{\rm d}N_{\rm ch}/{\rm d}\eta}/{\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle}$ showing a saturation towards high charged-particle multiplicities.