The
ALICE
collaboration
Acharya, Shreyasi
;
Adamova, Dagmar
;
Adhya, Souvik Priyam
;
et al.
Eur.Phys.J.C 79 (2019) 857, 2019.
https://inspirehep.net/literature/1735345
Inspire Record
1735345
DOI
10.17182/hepdata.91996
https://doi.org/10.17182/hepdata.91996
We present a study of the inclusive charged-particle transverse momentum ($p_{\rm T}$) spectra as a function of charged-particle multiplicity density at mid-pseudorapidity, ${\rm d}N_{\rm ch}/{\rm d}\eta$, in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV covering the kinematic range $|\eta|<0.8$ and $0.150$). The $p_{\rm T}$ spectra are reported for two multiplicity estimators covering different pseudorapidity regions. The $p_{\rm T}$ spectra normalized to that for INEL $>0$ show little energy dependence. Moreover, the high-$p_{\rm T}$ yields of charged particles increase faster than the charged-particle multiplicity density. The average $\it{p}_{\rm T}$ as a function of multiplicity and transverse spherocity is reported for pp collisions at $\sqrt{s}=13$ TeV. For low- (high-) spherocity events, corresponding to jet-like (isotropic) events, the average $p_{\rm T}$ is higher (smaller) than that measured in INEL $>0$ pp collisions. Within uncertainties, the functional form of $\langle p_{\rm T} \rangle(N_{\rm ch})$ is not affected by the spherocity selection. While EPOS LHC gives a good description of many features of data, PYTHIA overestimates the average $p_{\rm T}$ in jet-like events.