We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.
No description provided.
No description provided.
Untagged sample, (non-resonant).
We have measured the coherent nuclear production of π+ω systems at 202.5 GeV. This final state is dominated by the B+(1235) meson with a measured mass and full width of 1.271 ± 0.011 GeV and 0.232 ± 0.029 GeV, respectively. A radiative width of 230 ± 60 keV was extracted for the process B+(1235)→π+γ.
DATA REQUESTED FROM THE AUTHORS.
None
No description provided.
No description provided.
No description provided.
The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.
Comparison of total tau pair cross section with O(alpha**3) QED prediction.
Corrected for acceptance backgraound, and O(alpha**3) radiative effects.
Forward-backward asymmetry based on fit to angular distributions.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter Ann in 16.5-GeV/c proton-proton elastic scattering. We found an Ann of (6.1±3.0)% at P⊥2=2.2 (GeV/c)2. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in Ann in this medium-P⊥2 region.
ERROR CONTAINS BOTH SYSTEMATIC AND STATISTICAL UNCERTAINTY.
The difference ΔσT=σ(↓↑)-σ(↑↑) between the proton-proton total cross sections for protons in pure transverse-spin states, was measured at incident momenta 0.8 to 2.5 GeV/c in experiments performed at the Los Alamos Clinton P. Anderson Meson Physics Facility and the Argonne Zero Gradient Synchrotron. In agreement with other data, peaks were observed at center-of-mass energies of 2.14 and 2.43 GeV/c2, where D21 and G41 dibaryon resonances have been proposed.
DATA FROM LAMPF EXPERIMENT.
DATA FROM ARGONNE EXPERIMENT.
We have observed the production of\(\bar D^0 \) andD− mesons in neutron carbon interactions at 40–70 GeV/c. The experiment was performed with the spectrometer BIS-2 located in the neutron beam 4N of the Serpukhov accelerator.
No description provided.
No description provided.
CORRECTED FOR ACCEPTANCE. AUTHORS NAMED THIS SPECTRUM 'INVARIANT'.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
We have studied the absorption cross section of antiprotons on Al, Cu, and Pb for T=131.6 and 193.6 MeV. These results are compared with predictions of an optical model fitted to antiproton elastic scattering data on these nuclei and are in agreement with these predictions. The cross sections have an exponential dependence on the mass number A with an exponent of approximately 0.61.
No description provided.