Transverse momentum spectra of η mesons have been measured near the free nucleon-nucleon production threshold in the heavy ion reactions Ar40+ Canat, Kr86 + Zrnat, and Au197+ Au197 at 1.0A GeV and also in Ar40+ Canat at 1.5A GeV. The measured transverse momentum distributions are compared to model calculations. The relative abundance of Δ(1232) and N(1535) resonances excited in the collision is deduced. A comparison to pion data reveals scaling with the transverse mass of the emitted meson.
No description provided.
No description provided.
Extrapolation to full solid angle.
We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.
Forward--backward asymmetry summed over all flavours of quarks.
Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.
No description provided.
No description provided.
Here X=E(hadron)/E(beam).
Inelastic ρ0 photoproduction in the reaction γp→ρ0π+n is observed in the peripheral region |tγ,ρ0′|<0.12 GeV2. The data are consistent with the ρ0 production being due to a double peripheral mechanism which conserves s-channel helicity. The π+n produced in association with the ρ0 is also consistent with the same mechanism, although there is a distortion of the expected angular distributions in the π+n mass region of 1.3-1.5 GeV/c2.
No description provided.
Measurements have been made of inclusive 525 GeV π− interactions in emulsion. The results are compared to proton-emulsion and lower energy pion-emulsion data. Average multiplicities of relativistic shower particles increase with increasing energy, although with a somewhat steeper slope above 60 GeV than at lower energies. The ratio 〈ns〉p/〈ns〉π∼1.1 over the energy range 60–525 GeV. The ratio of the dispersion in the multiplicity distribution to the average multiplicity is the same for proton and pion collisions in emulsion, and is independent of projectile energy. The shape of the shower particle multiplicity distribution does not vary significantly with energy, and KNO scaling appears to hold over the energy range 60–525 GeV. The shower particle pseudorapidity distributions are independent of the beam energy in the target and projectile fragmentation regions, and both the pseudorapidity and multiplicity distributions agree reasonably well with the fritiof model predictions for 525 GeV pions. The dependence of the shower particle multiplicity 〈ns〉 on the number of heavy tracks Nh appraoches saturation as the total shower particle energy becomes a significant fraction of √s , and the pseudorapidity distributions shift toward smaller 〈η〉 with increasing numbers of grey and black tracks at 525 GeV. Neither the average number 〈Nh〉 nor the multiplicity distributions of the heavily ionizing tracks vary significantly with energy, and the normalized angular distributions of grey and black tracks are independent of the type of projectile or projectile energy.
NUCLEUS means average nuclei of BR-2 emulsion.
NUCLEUS means average nuclei of BR-2 emulsion.
NUCLEUS means average nuclei of BR-2 emulsion.
We have studied single photon production in e + e − annihilation based on a data sample corresponding to an integrated luminosity of 164.1 pb −1 at s =58 GeV . The single photon yield is consistent with the prediction of the standard model with three light neutrino species. No anomalous signal has been observed. From this result left- and right-handed scalar electrons in the mass degenerate case are excluded at 90% CL below 44.4 GeV/ c 2 for the massless photino.
No description provided.
None
No description provided.
NET BARYON DENSITY D(N)/D(Y) HAS BEEN DETERMINED AT THE RAPIDITY OF NN C.M.S., FOR NET BARYON THE FORMULAR: 2*(P-PBAR)+1.6*(LAMBDA- LAMBDABAR) HAS BEEN USED.
No description provided.
The cross section of the charged current process e − p → v e + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.
No description provided.
We have measured the polarization of Λ and Λ hyperons produced by 800 GeV protons on a Be target at a fixed targeting angle of 4.8 mrad. Comparison with previous data at 400 GeV production energy and twice the targeting angle shows no significant energy dependence for the Λ polarization. This is in striking contrast to the energy dependence found for σ + and Ξ − polarizations. We find no evidence for Λ polarization at 800 GeV.
Errors are combined statistics and systematics.
No description provided.
During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.
Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.
Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.
E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).