The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.
The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.
The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.
The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.
Cross sections for e-p charged current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV with an integrated luminosity of 16.4 pb-1 using the ZEUS detector at HERA. Differential cross-sections d\sigma/dQ2, d\sigma/dx and d\sigma/dy are presented for Q2>200 GeV2. In addition, d2\sigma/dxdQ2 was measured in the kinematic range 280 GeV2 < Q2 < 30000 GeV2 and 0.015 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson, determined from a fit to d\sigma/dQ2, is MW=80.3 \pm 2.1 (stat.) \pm 1.2 (syst.) \pm 1.0 (PDF) GeV.
The differential cross section DSIG/DQ**2.
The differential cross section DSIG/DX.
The differential cross section DSIG/DY.
We have measured the production of strange baryons and antibaryons in 340-GeV/c Σ−+C and 260-GeV/c n+C interactions. The single xF distributions show the expected leading particle effect, and the single pt2 distributions show a distinct nonthermal behavior. The xF distributions of Λ-Λ pairs indicate two different phase space distributions for the two coincident baryons. On the other hand two Λ¯’s show identical distributions. Momentum conservation during the formation process may represent a significant source for the observed behavior.
Total inclusive LAMBDA and LAMBDABAR production cross sections for the SIGMA- beam on the Carbon target.
Total inclusive LAMBDA and LAMBDABAR production cross sections for the Neutron beam on the Carbon target.
Total inclusive LAMBDA LAMBDA and LAMBDABAR LAMBDABAR pair production crosssections for the SIGMA- beam on the Carbon target.
Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.
Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3<M_X<38 GeV, where M_X is the mass of the hadronic final state.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
The exclusive photoproduction of J/psi mesons, gamma p->J/psi p, has been studied in ep collisions with the ZEUS detector at HERA, in the kinematic range 20<W<290 GeV, where W is the photon-proton centre-of-mass energy. The J/psi mesons were reconstructed in the muon and the electron decay channels using integrated luminosities of 38 pb^-1 and 55 pb^-1, respectively. The helicity structure of J/psi production shows that the hypothesis of s-channel helicity conservation is satisfied at the two standard-deviation level. The total cross section and the differential cross-section dsigma/dt, where t is the squared four-momentum transfer at the proton vertex, are presented as a function of W, for |t|<1.8 GeV^2. The t distribution exhibits an exponential shape with a slope parameter increasing logarithmically with W with a value b=4.15 \pm 0.05 (stat.)^{+0.30}_{-0.18} (syst.) GeV^-2 at W=90 GeV. The effective parameters of the Pomeron trajectory are alphapom(0) = 1.200 \pm 0.009(stat.)^{+0.004}_{-0.010}(syst.) and alphappom= 0.115 \pm 0.018(stat.)^{+0.008}_{-0.015}(syst.) GeV^-2.
The total exclusive J/PSI photoproduction cross section, the differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence as afunction of W, the photon-proton c.m. energy, for data from J/PSI muon decay.
The total exclusive J/PSI photoproduction cross section as a function of W,the photon-proton c.m. energy, for data from J/PSI electron decays.
The differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence for exclusive J/PSI photoproduction as a function of W, the photon-proton c.m. energy for data from J/PSI electron decays.
The photon-proton total cross section has been measured in the process e+ p -> e+ gamma p -> e+ X with the ZEUS detector at HERA. Events were collected with photon virtuality Q^2 < 0.02 GeV^2 and average gamma-p center-of-mass energy W_{gamma p} = 209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb^{-1}. The measured total cross section is sigma_{tot}^{gamma p} = 174 +- 1 (stat.) +- 13 (syst.) microbarns. The energy dependence of the cross section is compatible with parameterizations of high-energy p-p and p-pbar data.
Total GAMMA P cross section.
The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.
Measured cross section as a function of COS(THETA*), where THETA* is the dijet angle in the parton-parton c.m. frame. The data are shown in two X(C=GAMMA) regions.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. -1 < ETARAP(JET1) < 0. -1 < ETARAP(JET2) < 0.
Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. 0 < ETARAP(JET1) < 1. -1 < ETARAP(JET2) < 0.
The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.
The inclusive jet cross section as a function of PT.
Dijet cross sections in neutral current deep inelastic ep scattering have been measured in the range $10 < \Q2 < 10^4$ GeV$^2$ with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb$^{-1}$. The cross sections, measured in the Breit frame using the $\kt$ jet algorithm, are compared with next-to-leading-order perturbative QCD calculations using proton parton distribution functions. The uncertainties of the QCD calculations have been studied. The predictions are in reasonable agreement with the measured cross sections over the entire kinematic range.
Dijet cross section as a function of LOG10(Q**2).
Dijet cross section as a function of LOG10(MEAN(ET)**2/Q**2).
Dijet cross section as a function of LOG10(XI) for the ful Q**2 range.