We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.
No description provided.
No description provided.
No description provided.
Absolute pp-elastic-differential cross sections were measured at incident energies 492, 576, 642, 728, and 793 MeV from about 30° to 90° c.m. The total uncertainty was determined to be less than 1%, made possible by particle counting for beam normalization and extensive cross-checks of systematic effects. These new data are consistent with previous data above 600 MeV but have uncertainties about a factor of 10 smaller. Near 500 MeV these data are consistent with 90° data from TRIUMF, but differ significantly from similar data from PSI; the cause of this discrepancy is discussed.
No description provided.
No description provided.
No description provided.
Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.
No description provided.
Formfactor scaling assumes (Ge=Gm/mu).
We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.
Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.
Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.
Values of the spin-rotation parameter, β, are measured in the reaction π + p → K + Σ + at incident pion momenta of 1.69 and 1.88 GeV/ c .
No description provided.
No description provided.
The np and the pp analyzing powers A oono d and spin correlations A oonn d and A oosk d were measured simultaneously using the SATURNE II polarized deuteron beam at 0.744 and 0.794 GeV/nucleon. The results for the pp observables coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power A oono d and spin correlations A oonn d and A oosk d are equal to those for scattering of free polarized neutrons. The np data cover the angular region 95°⩽ θ CM ⩽122°. Our results for A oono d (np) confirm the phase-shift analysis predictions but spin correlations A oonn d (np) and A oosk d (np) have never been measured in this energy region and will considerably affect the PSA solution. Present results allow conclusions about the angular dependence near the minimum of A oono (np) and A oonn (np) in the vicinity of 0.8 GeV.
No description provided.
No description provided.
No description provided.
The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.
No description provided.
No description provided.
Results are presented from a study of the reaction p p→ Λ Λ near threshold. Over 3000 events recorded at s values 14.6 and 25.5 MeV above the Λ Λ threshold (2231.2 MeV) have been analysed. Results for the production cross section, differential cross section, and the Λ and Λ polarization are given at both energies and are compared with recent theoretical calculations of this process.
Statistical errors only.
No description provided.
No description provided.