The ratio of the deuteron to proton structure functions is measured at very small Bjorken x (down to 10–6) and for Q2>0.001 GeV2 from scattering of 470 GeV muons on liquid hydrogen and deuterium targets. The ratio F2n/F2p extracted from these measurements is found to be constant, at a value of 0.935±0.008±0.034, for x<0.01. This result suggests the presence of nuclear shadowing effects in the deuteron. The dependence of the ratio on Q2 is also examined; no significant variation is found.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1. The systematic uncertainty in the Q**2 dependece is negligible as compared to the statistical uncertainty.
The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.
JINR.
BNL-815.
CERN-EMU-001.
The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
The considerable polarization of hyperons produced at high xF has been known for a long time and has been interpreted with various theoretical models in terms of the constituents' spin. Recently, the analyzing power in inclusive Λ0 hyperon production has also been measured using the 200GeV/c Fermilab polarized proton beam. The covered kinematic range is 0.2≤xF≤1.0 and 0.1≤pT≤1.5GeV/c. The data indicate a negative asymmetry at large xF and moderate pT. These results can further test the current ideas on the underlying mechanisms for hyperon polarization.
No description provided.
No description provided.
No description provided.
We have observed five new decay modes of the charmed baryon Λc+ using data collected with the CLEO II detector. Four decay modes, Λc+→pK¯0η, Ληπ+, Σ+η, and Σ*+η, are first observations of final states with an η meson, while the fifth mode, Λc+→ΛK¯0K+, requires the creation of an ss¯ quark pair. We measure the branching fractions of these modes relative to Λc+→pK−π+ to be 0.25±0.04±0.04, 0.35±0.05±0.06, 0.11±0.03±0.02, 0.17±0.04±0.03, and 0.12±0.02±0.02, respectively.
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
None
No description provided.
We describe the sample of energetic single-photon events ( E γ > 15 GeV) collected by L3 in the 1991–1993 LEP runs. The event distributions agree with expectations from the Standard Model. The data are used to constrain the ZZ γ coupling and to set an upper limit of 4.1 × 10 −6 , μ B (90% C.L.) on the the magnetic moment of the τ neutrino.
The number of events expected from Standard Model is 8.2. Here UNSPEC is 'invisible' particle.
90 PCT C.L. limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Using data collected by the CLEO II detector, we have observed two states decaying to Λc+π+π−. Relative to the Λc+, their mass splittings are measured to be +307.5±0.4±1.0 and +342.2±0.2±0.5MeV/c2, respectively; this represents the first measurement of the less massive state. These two states are consistent with being orbitally excited, isospin zero Λc+ states.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugated states are understood.
Charged conjugated states are understood.
Charged conjugated states are understood.