We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.
CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.
THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
We report the analysis of the spatial energy distribution of data for e+e−→hadrons obtained with the MARK-J detector at PETRA. We define the quantity "oblateness" to describe the flat shape of the energy configuration and the three-jet structure which is unambiguously observed for the first time. Our data can be explained by quantum chromodynamic predictions for the production of quark-antiquark pairs accompanied by hard noncollinear gluons.
AVERAGE OBLATENESS AS A FUNCTION OF SQRT(S) AND OF THRUST AND OBLATENESS DISTRIBUTION (1/N)*DN/DOBLATENESS AT 17 AND 27.4 TO 31.6 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.
No description provided.
No description provided.
Results are presented on vector meson production in the hypercharge exchange reactions: π + p → K ∗+ (890) Y + and K − p→ ρ − Y + where Y + is either Σ + or Y ∗+ (1385). These reactions have been studied at 7 GeV/ c and 11.5 GeV/ c using the SLAC Hybrid Facility. Total and differential cross sections, hyperon polarization, and vector meson decay angular distributions are presented. We find that reactions with Σ + production are dominated by natural parity exchange. The Y ∗ (1385) reactions are consistent with substantial natural parity exchange contributions but also show significant unnatural parity exchange. The differential cross sections and polarization measurements for the vector meson production are compared to the pseudoscalar production reactions.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Prompt dimuon production has been measured. Events with mass up to 25 GeV/c2 are observed, as well as the J and ϒ resonances. Cross sections are given for J and ϒ production. For the continuum, the scaling function F(τ) is measured at very small values of τ=ms covering the range 0.05<τ<0.20.
No description provided.
HERE UPSILON = ALL USILON FAMILY. ANGULAR DISTBN. IS SEEN TO BE ISOTROPIC.
No description provided.
Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.
No description provided.
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
We measured the elastic scattering of αα at s = 126 GeV and of α p at s = 89 GeV . For αα , the differential cross section d σ /d t has a diffractive pattern minima at | t | = 0.10 and 0.38 GeV 2 . At small | t | = 0.05−0.07 GeV 2 , this cross section behaves like exp[(100 ± 10) t ]. Extrapolating a fit to the data to the optical point, we obtained for the total cross section α tot ( αα ) = 250 ± 50 mb and an integrated elastic cross section σ e1 ( αα ) = 45 ± mb. Another method of estimating σ tot ( αα ), based on measuring the interaction rate, yielded 295 ± 40 mb. For α p, d σ /d t has aminimum at | t | = 0.20 GeV 2 , and for 0.05 < | t | < 0.18 GeV 2 behaves like exp[(41 ± 2) t ]. Extrapolating this slope to | t | = 0, we found σ tot ( α p) = 130 ± 20 and σ e1 ( α p) = 20 ± 4mb. Results on pp elastic scattering at s = 63 GeV agree with previous ISR experiments.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
METHOD 1 FOR SIG IS USING OPTICAL THEOREM. METHOD 2 FOR SIG IS BASED ON THE MEASURED LUMINOSITY-MONITOR CROSS SECTIONS.