Date

Measurement of elastic omega photoproduction at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 73 (1996) 73-84, 1996.
Inspire Record 422159 DOI 10.17182/hepdata.44712

The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.

4 data tables

Total Elastic Cross Section.

No description provided.

SLOPE OF DSIG/DT distribution.

More…

Study of elastic rho0 photoproduction at HERA using the ZEUS leading proton spectrometer

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 73 (1997) 253-268, 1997.
Inspire Record 423078 DOI 10.17182/hepdata.44700

The differential cross section $d\sigma/dt$ for elastic $\rho~0$ photoproduction, $\gamma p \rightarrow \rho~0 p (\rho~0 \rightarrow \pi~+ \pi~-)$, has been measured in $ep$ interactions at HERA. The squared four-momentum exchanged at the proton vertex, $t$, has been determined directly by measuring the momentum of the scattered proton using the ZEUS Leading Proton Spectrometer (LPS), a large scale system of silicon micro-strip detectors operating close to the HERA proton beam. The LPS allows the measurement of the momentum of high energy protons scattered at small angles with accuracies of 0.4% for the longitudinal momentum and 5 MeV for the transverse momentum. Photoproduction of $\rho~0$ mesons has been investigated in the interval $0.073< |t| <0.40 GeV~2$, for photon virtualities $Q~2<1 GeV~2$ and photon-proton centre-of-mass energies $W$ between 50 and 100 GeV. In the measured range, the $t$ distribution exhibits an exponential shape with a slope parameter $b = 9.8 \pm 0.8 (stat.) \pm 1.1 (syst.) GeV~{-2}$. The use of the LPS eliminates the contamination from events with diffractive dissociation of the proton into low mass states.

3 data tables

SLOPE OF THE DSIG/DT distribution.

Total cross section integrated over t region.

Additional cross section, SIG, not given in the paper.


Nuclear-target diffraction dissociation in pi+ and K+ collisions with Au and Al at 250-GeV/c.

The EHS/NA22 collaboration Agababyan, N.M. ; Ataian, M.R. ; Charlet, M. ; et al.
Z.Phys.C 72 (1996) 65-70, 1996.
Inspire Record 419049 DOI 10.17182/hepdata.14252

An analysis of theA-dependence of the target-diffractive cross-section is presented. Data on thet-dependence of the cross section are fitted in the usual exponential form. The mean multiplicity of negative particles produced diffractively is found not to be sensitive to the nuclear mass. TheA-dependence of the emitted proton multiplicity and the angular distributions of the produced charged particles suggest re-scattering of the emitted particles on other nucleons of the nucleus. All these facts are compared with results obtained by Monte-Carlo simulation according to a two-component Dual Parton Model.

6 data tables

For target-diffractive cross-section.

For target-diffractive cross-section.

Multiplicities for the diffractive system.

More…

Measurement of elastic phi photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 377 (1996) 259-272, 1996.
Inspire Record 415642 DOI 10.17182/hepdata.44895

The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.

3 data tables

Numerical values of dsig/dt distribution requested from authors.

Numerical values of dsig/dt distribution read from plot.


Production of neutral strange particles in muon - nucleon scattering at 490-GeV

The E665 collaboration Adams, M.R. ; Aderholz, M. ; Aïd, S. ; et al.
Z.Phys.C 61 (1994) 539-550, 1994.
Inspire Record 362429 DOI 10.17182/hepdata.42473

The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Distributions of charged hadrons observed in deep-inelastic muon deuterium scattering at 490-GeV

The E-665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Lett.B 272 (1991) 163-168, 1991.
Inspire Record 318993 DOI 10.17182/hepdata.29288

Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean $p_T^2$ with an increase in the center of mass energy.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Anti-proton - proton elastic scattering at s**(1/2) = 1.8-TeV from |t| = 0.034-GeV/c**2 to 0.65-GeV/c**2

The E-710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 247 (1990) 127-130, 1990.
Inspire Record 297541 DOI 10.17182/hepdata.29660

The differential cross section for elastic antiproton—proton scattering at s =1.8 TeV has been measured over the t range 0.034⩽| t |⩽0.65 (GeV/ c ) 2 . A logarithmic slope parameter, B , of 16.3±0.3 (GeV/ c ) −2 is obtained. In contrast to lower energy experiments, no change in slope is observed over this t range.

2 data tables

Numerical values from FERMILAB-FN-562 suppliedto us by R. Rubinstein. Statistical errors only. t values at centre of each bin.

Nuclear slope parameter. Error contains 0.3 GeV**-2 systematic uncertainty folded.


Measurement of the anti-p p Total Cross-Section at s**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Rev.Lett. 63 (1989) 2784, 1989.
Inspire Record 281851 DOI 10.17182/hepdata.19995

We have measured the antiproton-proton total cross section at √s =1.8 TeV at the Fermilab Tevatron Collider; the value obtained is 78.3±5.9 mb. B, the nuclear slope parameter for elastic scattering, was measured to be 16.3±0.5 (GeV/c)−2. From these data, we derive a value for the total elastic cross section.

4 data tables

Nuclear Store Parameter.

Total cross section measurement. Errors contain systematic effects folded including a 15 PCT error in luminosity measurement which dominates the error.

Total cross section assuming RHO = 0.145 (low energy fit). If RHO is taken as 0.24 obtained by UA4 at sqrt(s) = 546 GeV, the value of SIG is reduced by 1.8 PCT.

More…

Measurement of b, the Nuclear Slope Parameter of the p anti-p Elastic Scattering Distribution at s**(1/2) = 1800-GeV

The E710 collaboration Amos, N.A. ; Baker, W.F. ; Bertani, M. ; et al.
Phys.Rev.Lett. 61 (1988) 525, 1988.
Inspire Record 261411 DOI 10.17182/hepdata.20066

We have studied proton-antiproton elastic scattering at s=1800 GeV at the Fermilab Collider, in the range 0.02<|t|<0.13 (GeV/c)2. Fitting the distribution by exp(−B|t|), we obtain a value of B of 17.2±1.3 (GeV/c)−2.

2 data tables

No description provided.

Error contains estimate of systematic effects.


Inelastic Diffractive Scattering at FNAL Energies

Ayres, D.S. ; Diebold, Robert E. ; Cutts, D. ; et al.
Phys.Rev.Lett. 37 (1976) 1724, 1976.
Inspire Record 109174 DOI 10.17182/hepdata.21057

Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.

1 data table

Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).