Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
None
RUN ONE.
RUN TWO.
RUN THREE.
We report the results of an experiment which measured n-p elastic scattering differential cross sections over a range in -t from 0.15 to ~ 3.6 (Gev/c)2 for incident neutron momenta from 70 to 400 GeV/c. We find the logarithmic slope parameter, evaluated at -t = 0.2 (GeV/c)2, to be consistent with existing proton-proton parameterizations. The data exhibit a dip in the cross section near -t 1.4 (Gev/c)2 for incident neutron momenta above 200 Gev/c. For neutron momenta less than 280 GeV/c, the neutron-proton cross sections are found to be higher than existing proton-proton data in the range 0.7 ~ -t ~ 1.3 (Gev/c)2 which is in contradic- tion to most Regge predictions.
No description provided.
No description provided.
No description provided.
We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.
No description provided.
No description provided.
No description provided.
None
DATA AVERAGED FOR TWO DIRECTIONS OF TARGET POLARIZATION.
No description provided.
No description provided.
The reactions π−p→K0Λ,K0Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections and hyperon polarizations are presented and compared with existing data from earlier electronic experiments. The data in the forward hemisphere are used to perform an amplitude analysis of the 0−1/2+→0−1/2+ hypercharge exchange processes.
No description provided.
No description provided.
No description provided.
The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.
ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
ELECTRON ASYMMETRY AT Q**2 ABOUT 1.5 GEV**2.
PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.
Dimuon mass mass distribution at XFP=0.1.
Dimuon production for varying mass as function of XFP.
Dimuon production for varying mass as function of XFP.
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.
No description provided.