A study is presented of anomalous HVV interactions of the Higgs boson, including its $CP$ properties. The study uses Higgs boson candidates produced mainly in vector boson fusion and gluon fusion that subsequently decay to a pair of $\tau$ leptons. The data were recorded by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A matrix element technique is employed for the analysis of anomalous interactions. The results are combined with those from the H $\to 4\ell$ decay channel presented earlier, yielding the most stringent constraints on anomalous Higgs boson couplings to electroweak vector bosons expressed as effective cross section fractions and phases: the $CP$-violating parameter $f_{a3}\cos(\phi_{a3})$ $=$ $(0.00 \pm 0.27) \times 10^{-3}$ and the $CP$-conserving parameters $f_{a2}\cos(\phi_{a2})$ $=$ $(0.08 ^{+1.04}_{-0.21}) \times 10^{-3}$, $f_{\Lambda1}\cos(\phi_{\Lambda1})$ $=$ $(0.00 ^{+0.53}_{-0.09}) \times 10^{-3}$, and $f_{\Lambda1}^{\mathrm{Z}\gamma}\cos(\phi_{\Lambda1}^{\mathrm{Z}\gamma})$ $=$ $(0.0 ^{+1.1}_{-1.3}) \times 10^{-3}$. The current dataset does not allow for precise constraints on $CP$ properties in the gluon fusion process. The results are consistent with standard model expectations.
Observed and expected likelihood scans of $f_{a3}\cos\phi_{a3}$. See Section 4 of the paper for more details.
Observed and expected likelihood scans of $f_{a2}\cos\phi_{a2}$. See Section 4 of the paper for more details.
Observed and expected likelihood scans of $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 4 of the paper for more details.
We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at \sNN~= 7.7-200 GeV. Within the available acceptance of $|\eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at \sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations, and provide new insights on the energy dependence of baryon-strangeness correlations. An erratum has been added to address the issue of self-correlation in the previously considered efficiency correction for off-diagonal cumulant measurement. Previously considered unidentified (net-)charge correlation results ($\sigma^{11}_{Q,p}$ and $\sigma^{11}_{Q,k})$ are now replaced with identified (net-)charge correlation ($\sigma^{11}_{Q^{PID},p}$ and $\sigma^{11}_{Q^{PID},k}$)
The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.
The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.
Centrality dependence of efficiency corrected second-order diagonal cumulants of net-proton, net-kaon and net-pion (top to bottom) of the multiplicity distributions for Au+Au collisions at GeV (left to right) within kinematic range of |η| < 0.5 and 0.4 < pT < 1.6 GeV/c. The boxes represent the systematic error. The statistical error bars are within the marker size. The dashed lines represent scaling predicted by central limit theorem and the solid lines are UrQMD calculations.
A search is presented for charged Higgs bosons in the H$^{\pm}$ $\to$ $\tau^{\pm}\nu_\tau$ decay mode in the hadronic final state and in final states with an electron or muon. The search is based on proton-proton collision data recorded by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The results agree with the background expectation from the standard model. Upper limits at 95% confidence level are set on the production cross section times branching fraction to $\tau^{\pm}\nu_\tau$ for an H$^{\pm}$ in the mass range of 80 GeV to 3 TeV, including the region near the top quark mass. The observed limit ranges from 6 pb at 80 GeV to 5 fb at 3 TeV. The limits are interpreted in the context of the minimal supersymmetric standard model $m_\mathrm{h}^\mathrm{mod-}$ scenario.
The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a tau-nu pair.
The 95% CL upper limit on the branching fraction of the top to a Charged Higgs boson decaying into a tau-nu pair.
A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV. The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed for the $\ell\nu$jj final state (with $\ell\nu$ indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass $m_\mathrm{jj}$ $>$ 120 GeV and transverse momenta $p_\mathrm{T j}$ $>$ 25 GeV. The cross section of the process is measured in the electron and muon channels yielding $\sigma_\mathrm{EW}$(Wjj) = 6.23 $\pm$ 0.12 (stat) $\pm$ 0.61 (syst) pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-$2.3 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.5 TeV$^{-2}$, $-$8.8 $<$ $c_{\mathrm{W}}/\Lambda^2$ $<$ 16 TeV$^{-2}$, and $-$45 $<$ $c_{\mathrm{B}}/\Lambda^2$ $<$ 46 TeV$^{-2}$. These results are combined with the CMS EW Zjj analysis, yielding the constraint on the $c_{\mathrm{WWW}}$ coupling: $-$1.8 $<$ $c_{\mathrm{WWW}}/\Lambda^2$ $<$ 2.0 TeV$^{-2}$.
Transformed BDT output distribution after the event preselection, in the muon channel.
Transformed BDT output distribution after the event preselection, in the electron channel.
Muon pT in data and SM backgrounds, and various aTGC scenarios after the event preselection, in the muon channel.
A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, $\Delta\phi_{12}$ , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb$^{-1}$ are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177$^\circ$ $<$ $\Delta\phi_{12}$ $<$ 180$^\circ$. The 2- and 3-jet measurements are not simultaneously described by any of models.
No description provided.
No description provided.
No description provided.
Measurements of the pseudorapidity distributions of charged hadrons produced in xenon-xenon collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.44 TeV are presented. The measurements are based on data collected by the CMS experiment at the LHC. The yield of primary charged hadrons produced in xenon-xenon collisions in the pseudorapidity range $|\eta|$ $<$ 3.2 is determined using the silicon pixel detector in the CMS tracking system. For the 5% most central collisions, the charged-hadron pseudorapidity density in the midrapidity region $|\eta|$ $<$ 0.5 is found to be 1187 $\pm$ 36 (syst), with a negligible statistical uncertainty. The rapidity distribution of charged hadrons is also presented in the range $|y|$ $<$ 3.2 and is found to be independent of rapidity around $y =$ 0. Existing Monte-Carlo event generators are unable to simultaneously describe both results. Comparisons of charged-hadron multiplicities between xenon-xenon and lead-lead collisions at similar collision energies show that particle production at midrapidity is strongly dependent on the collision geometry in addition to the system size and collision energy.
Averaged and symmetrised charged-hadron pseudorapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\%, 0--5\%, and 50--55\% centrality intervals. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
Averaged and symmetrised charged-hadron rapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\% centrality interval. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
Charged-hadron pseudorapidity density in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV at midrapidity as a function of event centrality. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.
Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.
Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.
For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3 fb$^{-1}$, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01 $\times$ 10$^{-6}$ is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2016 and 2017 data
Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2016 data
Expected and observed 95% CL upper limits on the branching fraction of the W boson to 3 charged pions, using 2017 data
Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of $ \sqrt{s_{_\mathrm{NN}}} =$ 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42 $\mu$b$^{-1}$. The collective motion of the system formed in the collision is parameterized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients $v_{2}$, $v_{3}$, and $v_{4}$ are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to non-collective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.
Elliptic-flow coefficients $v_2$ based on the two-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.
Elliptic-flow coefficients $v_2$ based on the scalar-product technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 0.8$.
Elliptic-flow coefficients $v_2$ based on the four-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.
The first ($v_1^{\text{even}}$), second ($v_2$) and third ($v_3$) harmonic coefficients of the azimuthal particle distribution at mid-rapidity, are extracted for charged hadrons and studied as a function of transverse momentum ($p_T$) and mean charged particle multiplicity density $\langle \mathrm{N_{ch}} \rangle$ in U+U ($\roots =193$~GeV), Au+Au, Cu+Au, Cu+Cu, $d$+Au and $p$+Au collisions at $\roots = 200$~GeV with the STAR Detector. For the same $\langle \mathrm{N_{ch}} \rangle$, the $v_1^{\text{even}}$ and $v_3$ coefficients are observed to be independent of collision system, while $v_2$ exhibits such a scaling only when normalized by the initial-state eccentricity ($\varepsilon_2$). The data also show that $\ln(v_2/\varepsilon_2)$ scales linearly with $\langle \mathrm{N_{ch}} \rangle^{-1/3}$. These measurements provide insight into initial-geometry fluctuations and the role of viscous hydrodynamic attenuation on $v_n$ from small to large collision systems.
Two-particle azimuthal correlation functions for various systems for $<Nch>=21\pm3$
Second-order cumulant $c_{2}${4}($\times10^{6})$ vs $<N_{ch}>$ for various systems
$v_{1}^{fluc}$ as a function of $p_{T}(GeV/c)$ for various systems for $<Nch>=21\pm3$