Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables

No description provided.

Combined electron and muon analysis.


Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

2 data tables

No description provided.

The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').


Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.


A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


Ratios of multijet cross-sections in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 1955-1960, 2001.
Inspire Record 532905 DOI 10.17182/hepdata.42971

We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.

1 data table

First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.


Measurement of the average b baryon lifetime and the product branching ratio f (b --> Lambda(b)) x BR (Lambda(b) --> Lambda lepton- anti-neutrino X)

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 69 (1996) 195-214, 1996.
Inspire Record 397395 DOI 10.17182/hepdata.51966

None

1 data table

Charged conjugate state is assumed.


Precision Comparison of Inelastic electron and Positron Scattering from Hydrogen

Fancher, D.L. ; Caldwell, David O. ; Cumalat, John P. ; et al.
Phys.Rev.Lett. 37 (1976) 1323, 1976.
Inspire Record 4108 DOI 10.17182/hepdata.21910

Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.

1 data table

No description provided.


Measurement of the fraction of \Y1S originating from \chib1P decays in $pp$ collisions at $\sqrt{s} = 7\tev$

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adametz, A. ; et al.
JHEP 11 (2012) 031, 2012.
Inspire Record 1184177 DOI 10.17182/hepdata.72876

The production of \chib1P mesons in $pp$ collisions at a centre-of-mass energy of $7\tev$ is studied using $32\invpb$ of data collected with the \lhcb detector. The $\chib1P$ mesons are reconstructed in the decay mode $\chib1P \to \Y1S\g \to \mumu\g$. The fraction of \Y1S originating from \chib1P decays in the \Y1S transverse momentum range $6 < \pt^{\Y1S} < 15\gevc$ and rapidity range $2.0 < y^{\Y1S} < 4.5$ is measured to be $(20.7\pm 5.7\pm 2.1^{+2.7}_{-5.4})%$, where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \Y1S and \chib1P polarizations.

1 data table

Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T(\Upsilon(1S))$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons. The first uncertainty is statistical, the second is the systematic uncertainty ($10.21\%$) and the third uncertainty is due to the unknown $\Upsilon(1S)$ and $\chi_b(1P)$ polarizations ($ _{-26}^{+13}\%$). The second and third uncertainties are considerent constant over the measurement fiducial phase-space.


Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Charm - Anticharm Asymmetries in High Energy Photoproduction

The E687 collaboration Frabetti, P.L. ; Cheung, H.W.K. ; Cumalat, John P. ; et al.
Phys.Lett.B 370 (1996) 222-232, 1996.
Inspire Record 415573 DOI 10.17182/hepdata.42320

We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.

3 data tables

Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.

Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.

Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.