The e+ e- ---> pi+ pi- pi+ pi-, K+ K- pi+ pi-, and K+ K- K+ K- cross sections at center-of-mass energies 0.5-GeV to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 71 (2005) 052001, 2005.
Inspire Record 676691 DOI 10.17182/hepdata.22111

We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.

3 data tables

Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- PI+ PI- cross sections. The errors are statistical only.

Measured K+ K- K+ K- cross sections. The errors are statistical only.


Exclusive rho0 meson electroproduction from hydrogen at CLAS.

The CLAS collaboration Hadjidakis, C. ; Guidal, M. ; Garcon, M. ; et al.
Phys.Lett.B 605 (2005) 256-264, 2005.
Inspire Record 655683 DOI 10.17182/hepdata.41881

The longitudinal and transverse components of the cross section for the $e p\to e^\prime p \rho^0$ reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of $x_B$ from 0.2 to 0.6 and of $Q^2$ from 1.5 to 3.0 GeV$^2$. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter.

5 data tables

The ratio of the longitudinal to transverse cross sections for two Q**2 regions.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.31.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.38.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of e p --> e' p pi+ pi- and baryon resonance analysis.

The CLAS collaboration Ripani, M. ; Burkert, V.D. ; Mokeev, V. ; et al.
Phys.Rev.Lett. 91 (2003) 022002, 2003.
Inspire Record 600451 DOI 10.17182/hepdata.11116

The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.

84 data tables

Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.

Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.

More…

Search for first-generation scalar and vector leptoquarks

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 64 (2001) 092004, 2001.
Inspire Record 557085 DOI 10.17182/hepdata.42922

We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.

3 data tables

No description provided.

No description provided.

No description provided.


Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Cross-section for b jet production in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 85 (2000) 5068-5073, 2000.
Inspire Record 531669 DOI 10.17182/hepdata.42975

Bottom quark production in pbar-p collisions at sqrt(s)=1.8 TeV is studied with 5 inverse picobarns of data collected in 1995 by the DO detector at the Fermilab Tevatron Collider. The differential production cross section for b jets in the central rapidity region (|y(b)| < 1) as a function of jet transverse energy is extracted from a muon-tagged jet sample. Within experimental and theoretical uncertainties, DO results are found to be higher than, but compatible with, next-to-leading-order QCD predictions.

1 data table

No description provided.


Search for second generation leptoquark pairs in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 2088-2093, 2000.
Inspire Record 508772 DOI 10.17182/hepdata.42087

We have searched for second generation leptoquark (LQ) pairs in the \mu\mu+jets channel using 94+-5 pb^{-1} of pbar-p collider data collected by the D0 experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the \mu\nu+jets and \nu\nu+jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and $beta, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of 200(180) GeV/c^2 for \beta=1(1/2) are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of \beta.

1 data table

No description provided.


Small angle muon and bottom quark production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 5478-5483, 2000.
Inspire Record 503949 DOI 10.17182/hepdata.42072

This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.

3 data tables

The forward muon cross section (per unit rapidity).

The cross section for muons originating from b-quark decay.

Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.


The b anti-b production cross-section and angular correlations in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 487 (2000) 264-272, 2000.
Inspire Record 499943 DOI 10.17182/hepdata.42088

We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.

3 data tables

No description provided.

The errors are combinations of statistical and systematic uncertainties.

The distribution of MU+ MU- azimuthal angle difference.