Measurement of the $W \to e \nu$ and $Z/\gamma^* \to e^+e^-$ Production Cross Sections at Mid-rapidity in Proton-Proton Collisions at $\sqrt{s}$ = 500 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.D 85 (2012) 092010, 2012.
Inspire Record 1081120 DOI 10.17182/hepdata.98931

We report measurements of the charge-separated $W^{+(-)} \to e^{+(-)} + \nu_e(\bar{\nu}_e)$ and $Z/\gamma^* \to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $\sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$ of data recorded in 2009 by the STAR detector at RHIC. Production cross sections for W bosons that decay via the $e \nu$ channel were measured to be $\sigma(pp \to W^+ X) \cdot BR(W^+ \to e^+ \nu_e)$ = 117.3 \pm 5.9(stat) \pm 6.2(syst) \pm 15.2(lumi) pb, and $\sigma(pp \to W^- X) \cdot BR(W^- \to e^- \bar{\nu}_e)$ = 43.3 \pm 4.6(stat) \pm 3.4(syst) \pm 5.6(lumi) pb. For $Z/\gamma^*$ production, $\sigma(pp \to Z/\gamma^* X) \cdot BR(Z/\gamma^* \to e^+ e^-)$ = 7.7 \pm 2.1(stat) $^{+0.5}_{-0.9}$(syst) \pm 1.0(lumi) pb for di-lepton invariant masses $m_{e^+e^-}$ between 70 and 110 GeV/$c^2$. First measurements of the W cross section ratio, $\sigma(pp \to W^+ X) / \sigma(pp \to W^- X)$, at $\sqrt{s}$ = 500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions, are found to agree with the measured cross sections.

11 data tables

(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.

(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.

(Color online) Distributions of $E^{e}_{T}$ for W candidate events after sequentially applying the selection criteria de- scribed in Secs. IV A and IV B.

More…

Multiplicity and pseudorapidity distributions of photons in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 95 (2005) 062301, 2005.
Inspire Record 676188 DOI 10.17182/hepdata.98929

We present the first measurement of multiplicity and pseudorapidity distributions of photons in the pseudorapidity region 2.3 $\le$ $\eta$ $\le$ 3.7 for different centralities in Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. We find that the photon yield in this pseudorapidity range scales with the number of participating nucleons at all collision centralities studied. The pseudorapidity distribution of photons, dominated by neutral pion decays, has been compared to those of identified charged pions, photons, and inclusive charged particles from heavy ion and nucleon-nucleon collisions at various energies. The photon production in the measured pseudorapidity region has been shown to be consistent with the energy and centrality independent limiting fragmentation scenario.

3 data tables

${dN_{\gamma}}\over{d\eta}$ for various event centrality classes compared to HIJING and AMPT model calculations.

Variation of $N_{\gamma}$ per participant pair in PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band reflects uncertainties in $N_{part}$ calculations.

(Color Online) Estimated ${dN_{\pi^{0}}}\over{dy}$ from ${dN_{\gamma}}\over{dy}$ normalized to $N_{part}$, as compared to ${dN_{\pi^{\pm}}}\over{dy}$ normalized to $N_{part}$, as a function of $y-y_{beam}$ for central collisions at various collision energies.