Date

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

7 data tables match query

Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.

More…

Measurement of emission angle anisotropy via long-range angular correlations with high $p_T$ hadrons in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 98 (2018) 014912, 2018.
Inspire Record 1638373 DOI 10.17182/hepdata.141453

We present measurements of two-particle angular correlations between high-transverse-momentum ($2<p_T<11$ GeV/$c$) $\pi^0$ observed at midrapidity ($|\eta|<0.35$) and particles produced either at forward ($3.1<\eta<3.9$) or backward ($-3.7<\eta<-3.1$) rapidity in $d$$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a ridge-like structure that persists up to $p_T{\approx}6$ GeV/$c$ and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The ridge-like structure is absent in the $d$-going direction as well as in $p$$+$$p$ collisions, in the transverse-momentum range studied. The results indicate that the ridge-like structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.

8 data tables match query

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: (a) the negative of the dipole coefficient, $-c_1$; (b) the quadrupole coefficient $c_2$; (c) the ratio ${-c_2}/{c_1}$.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $d$+Au.

Fourier fit coefficients for CNT-MPCS (Au-going) correlations, as a function of collision system and $\pi^0$ $p_T$: Fractional systematic uncertainty on the quadrupole coefficient $c_2$ for $p$+$p$.

More…

Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

21 data tables match query

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

More…

Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at sqrt(s_NN) = 200 GeV and constraints on medium transport coefficients

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 101 (2008) 232301, 2008.
Inspire Record 778168 DOI 10.17182/hepdata.141030

For Au + Au collisions at 200 GeV we measure neutral pion production with good statistics for transverse momentum, p_T, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p_T < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parameterization for the transport coefficient of the medium, e.g. \mean(q^hat) in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au+Au collisions/ instead, it increases proportional to the number of participating nucleons, as N_part^2/3.

12 data tables match query

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

$\pi^0$ invariant yields for different centralities. The bin range is not an uncertainty in the x-axis because the actual uncertainty by having the finite bin width is corrected for by the bin-shift correction. These bins were constructed using the corrected finite values as centers.

More…

Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

4 data tables match query

Polar angular decay coefficient $\lambda_{\theta}$ as a function of transverse momentum for four reference frames and three $p_T$ bins. The numbers in the CS frame for the $p_T$ = 2-3 GeV/$c$ bin are 90% confidence level upper limits.

"Mixed" angular decay coefficient $\lambda_{\theta \phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

Azimuthal angular decay coefficient $\lambda_{\phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

More…

Measurement of neutral mesons in p+p collisions at sqrt(s) = 200 GeV and scaling properties of hadron production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 83 (2011) 052004, 2011.
Inspire Record 855102 DOI 10.17182/hepdata.143371

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K^0_S , \omega, \eta prime, and \phi mesons in p + p collisions at = 200 GeV. Measurements \omega and \phi production in different decay channels give consistent results. New results for the \phi are in agreement with previously published data and extend the measured pT coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-pT and characterizing the low-pT regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

15 data tables match query

Parameters of the Tsallis fit with Eq. 8 in the paper with all parameters free to vary. Cross sections are in $\mu$b for $J/\psi$ and $\psi^{\prime}$ and in mb for all other particles.

Parameters of the power law fit with Eq. 3 in the paper. Units of $A$ are mb(GeV/$c$)$^{\upsilon + 2}$.

Constant and linear fits to the power law and Tsallis fit parameters. The last column (Prob.) gives the probability estimated by the $\chi^2$/$n.d.f.$ of the fit.

More…

Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

15 data tables match query

$v_2$ vs. $p_T$ for charged hadrons for Au+Au collisions.

$v_2$ vs. $p_T$ for charged hadrons for Cu+Cu collisions.

$v_2$ vs. $p_T$ for charged hadrons. divided by $k$ times ($k = 3.1$) the $p_T$-integrated $v_2$ (centrality) for Au+Au and Cu+Cu collisions.

More…

Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

25 data tables match query

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 10% to 20% centrality $Au+Au$.

More…

System size and energy dependence of jet-induced hadron pair correlation shapes in Cu + Cu and Au + Au collisions at s(NN)**(1/2) = 200-GeV and 62.4-GeV.

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.Lett. 98 (2007) 232302, 2007.
Inspire Record 731669 DOI 10.17182/hepdata.142605

We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

6 data tables match query

The measured correlation $C(\Delta\phi)$ and the dijet correlation $J(\Delta\phi)$ in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

Dijet correlations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV.

More…

Onset of $\pi^0$ Suppression Studied in Cu$+$Cu Collisions at $\sqrt{s_{NN}}=$22.4, 62.4, and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 101 (2008) 162301, 2008.
Inspire Record 778403 DOI 10.17182/hepdata.143005

Neutral pion transverse momentum (pT) spectra at mid-rapidity (|y| < 0.35) were measured in Cu+Cu collisions at \sqrt s_NN = 22.4, 62.4, and 200 GeV. Relative to pi -zero yields in p+p collisions scaled by the number of inelastic nucleon-nucleon collisions (Ncoll) at the respective energies, the pi-zero yields for pT \ge 2 GeV/c in central Cu+Cu collisions at 62.4 and 200 GeV are suppressed, whereas an enhancement is observed at 22.4 GeV. A comparison with a jet quenching model suggests that final state parton energy loss dominates in central Cu+Cu collisions at 62.4 GeV and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

9 data tables match query

Invariant $\pi^0$ yields in central Cu+Cu collisions and invariant $\pi^0$ cross sections in $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. The error (tot.) includes the quadratic sum of the statistical and total systematic uncertainties.

Invariant $\pi^0$ yields in central Cu+Cu collisions and invariant $\pi^0$ cross sections in $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The error (tot.) includes the quadratic sum of the statistical and total systematic uncertainties.

Invariant $\pi^0$ yields in central Cu+Cu collisions and invariant $\pi^0$ cross sections in $p$+$p$ collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error (tot.) includes the quadratic sum of the statistical and total systematic uncertainties.

More…