The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
A search is performed for heavy Majorana neutrinos (N) decaying into a W boson and a lepton using the CMS detector at the Large Hadron Collider. A signature of two jets and either two same sign electrons or a same sign electron-muon pair is searched for using 19.7 inverse femtobarns of data collected during 2012 in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data are found to be consistent with the expected standard model (SM) background and, in the context of a Type-1 seesaw mechanism, upper limits are set on the cross section times branching fraction for production of heavy Majorana neutrinos in the mass range between 40 and 500 GeV. The results are additionally interpreted as limits on the mixing between the heavy Majorana neutrinos and the SM neutrinos. In the mass range considered, the upper limits range between 0.00015 - 0.72 for |V[eN]|^2 and 6.6E-5 - 0.47 for |V[eN] V*[muN]|^2 / ( |V[eN]|^2 + |V[muN]|^2 ), where V[lN] is the mixing element describing the mixing of the heavy neutrino with the SM neutrino of flavour l. These limits are the most restrictive direct limits for heavy Majorana neutrino masses above 200 GeV.
Selection requirements for the low- and high-mass signal regions.
ee channel. Selection requirements on discriminating variables determined by the optimization for each Majorana neutrino mass point. The last column shows the overall signal acceptance. Different selection criteria are used for low- and high-mass search regions. The "-" indicates that no selection requirement is made.
e$\mu$ channel. Selection requirements on discriminating variables determined by the optimization for each Majorana neutrino mass point. The last column shows the overall signal acceptance. Different selection criteria are used for low- and high-mass search regions. The ''-'' indicates that no selection requirement is made.
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
We study the decays of the charmonium resonances $J/\psi$ and $\psi(3686)$ to the final states $\Xi^{-}\bar\Xi^{+}$, $\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ based on a single baryon tag method using data samples of $(223.7 \pm 1.4) \times 10^{6}$ $J/\psi$ and $(106.4 \pm 0.9) \times 10^{6}$ $\psi(3686)$ events collected with the BESIII detector at the BEPCII collider. The decay $\psi(3686)\rightarrow\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ is observed for the first time, and the measurements of the other processes, including the branching fractions and angular distributions, are in good agreement with and much more precise than the previously published results. Additionally, the ratios $\frac{{\cal{B}}(\psi(3686)\rightarrow\Xi^{-}\bar\Xi^{+})}{{\cal{B}}(J/\psi\rightarrow\Xi^{-}\bar\Xi^{+})}$, $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}$ and $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}$ are determined.
The number of the observed events $N_\rm{obs.}$, efficiencies $\epsilon$, $\alpha$ values, and branching fractions ${\cal B}$ for $\psi\rightarrow\Xi^{-}\bar\Xi^{+}$, $\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$. Only statistical uncertainties are indicated.
The result of a search for flavor changing neutral currents (FCNC) through single top quark production in association with a photon is presented. The study is based on proton-proton collisions at a center-of-mass energy of 8 TeV using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. The search for t gamma events where t to Wb and W to mu nu is conducted in final states with a muon, a photon, at least one hadronic jet with at most one being consistent with originating from a bottom quark, and missing transverse momentum. No evidence of single top quark production in association with a photon through a FCNC is observed. Upper limits at the 95% confidence level are set on the tu gamma and tc gamma anomalous couplings and translated into upper limits on the branching fraction of the FCNC top quark decays: B(t to u gamma) < 1.3E-4 and B(t to c gamma) < 1.7E-3. Upper limits are also set on the cross section of associated t gamma production in a restricted phase-space region. These are the most stringent limits currently available.
The expected and observed $95\%$ CL upper limits on the FCNC $tu\gamma$ and $tc\gamma$ cross sections times branching fraction, the anomalous couplings $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$, and the corresponding branching fractions B($t \rightarrow u \gamma$)and B($t\rightarrow c \gamma$)at LO are given. The one and two standard deviation ($\sigma$) ranges on the LO expected limits are also presented.
The expected and observed $95\%$ CL upper limits on the FCNC $tu\gamma$ and $tc\gamma$ cross sections times branching fraction, the anomalous couplings $\kappa_{tu\gamma}$ and $\kappa_{tc\gamma}$, and the corresponding branching fractions B($t \rightarrow u \gamma$)and B($t\rightarrow c \gamma$)at NLO are given. The one and two standard deviation ($\sigma$) ranges on the NLO expected limits are also presented.
Upper limits on the signal cross sections are also determined for a restricted phase-space region in which the detector is fully efficient. This removes the need to extrapolate to phase-space regions where the analysis has little or no sensitivity. The fiducial region is defined as:.
We present a measurement of b jet transverse momentum (pt) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 inverse nanobarns collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 +/- 0.15 (stat + syst pPb) +/- 0.27 (syst PYTHIA) averaged over all jets with pt between 55 and 400 GeV/c and with abs(eta[lab]) < 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.
Distributions of the JP tagger discriminator before applying the SSV tagger selection.
Distributions of the JP tagger discriminator after applying the SSV tagger selection.
Distributions of the b-tagging efficiency as a function of the mistag rate of light jets for pp collisions in a PYTHIA simulation.
A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the $\sqrt{s}$ = 8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Furthermore, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.
Acceptance for the loose channel of the Razor analysis for the direct squark-squark model.
Acceptance times efficiency for the loose channel of the Razor analysis for the direct squark-squark model.
Acceptance for the tight channel of the Razor analysis for the direct squark-squark model.
The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.
The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.
This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.
Fiducial cross-section SIG for the exclusive e+ e- and mu+ mu- production.
Ratios of the number of observed to the number of expected events based on the MC predictions (R) for the exclusive e+ e- and mu+ mu- production.
Detector response matrix (PROB) for the acoplanarity variable (ACO) for e+ e- channel (empty bins are not reported).
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.