Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.
The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.
The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.
Measurements of elastic proton-proton differential cross sections for angles between 65° and 90° c.m.s. have been made at 8, 9, 10, 11, 14, 15 and 21 GeV/c. The shape of the angular distribution is found to change suddenly between 8 and 11 GeV/c. An interpretation of this discontinuous behaviour in terms of the reactive effects of baryon-antibaryon pair production is proposed.
No description provided.
No description provided.
Backward elastic scattering has been measured for π + p at 2.85 and 3.30 GeV/ c and for π − p at 3.30 GeV/ c . The π + p angular distributions show steep backward peaks, whereas the π − p distribution is flatter. At 2.85 GeV/ c the π + p differential cross section close to 180° is more than twice that at 3.30 GeV/ c , supporting the assignment J P = 11 2 + for Δ δ (2420) resonance. The π + p data at 2.85 GeV/ c indicate the onset of a dip at cos θ c.m. ≈ −0.97.
The data for cos(theta) = 1 is the extrapolation.
The data for cos(theta) = 1 and U = 0 are the extrapolations.
The data for cos(theta) = 1 and U = 0 are the extrapolations.
The analysis of the eight-prong interactions of 8 GeV/ c π + with protons indicates the existence of the new heavy nucleon isobar with the mass M = 3.69 GeV and the isospin T = 1 2 .
No description provided.
A phase shift analysis of the K<sup loc="post">+</sup>p elastic scattering at 780 MeV/c has been performed. The experimental differential cross section is best explained by a solution with dominant s wave, negative s wave phase shift (−42.7 ± 1 deg.) and small contributions of p and d waves.
Corrected for PI+ P events and scanning efficiency.
Backward elastic K<sup loc="post">+</sup>p and K<sup loc="post">−</sup>p scattering has been measured in the angular interval 168<sup loc="post">o</sup> <θc.m. < 177<sup loc="post">o</sup>. We find <math altimg="si1.gif">(<rm>d</rm>σ/<rm>d</rm>Ω) <inf loc="post"><rm>K</rm><sup loc="post">+</sup><rm>p</rm> → <rm>pK</rm><sup loc="post">+</sup></inf> = 17 ± 4 μ<rm>b</rm>/<rm>sr</rm></math> and <math altimg="si2.gif">(<rm>d</rm>σ/<rm>d</rm>Ω)<inf loc="post"><rm>K</rm><sup loc="post">−</sup><rm>p</rm> → <rm>pK</rm><sup loc="post">−</sup></inf> < 0.6 μ<rm>b</rm>/<rm>sr</rm></math>. K<sup loc="post">+</sup>p elastic scattering exhibits a backward peak.
The data for cos(theta) = 1 is the extrapolation.
The data for cos(theta) = 1 is the extrapolation.
The elastic scattering of 3.55 GeV/ c π + and π − mesons by protons was measured at centre-of-mass angles between 165° and 177°. The angular distributions for 864 events show a steeply rising backward peak for π + p, while the shape is less clear for π − p.
No description provided.
No description provided.
Extrapolations.
None
No description provided.
No description provided.
No description provided.
The Λ p å Λ p cross section has been measured in the Λ-momentum range of 120 to 320 MeV/ c using 238 events. A comparison with the effective range approximation yielded the values a s = −2.46, a t = −2.07, r s = 3.87 and r t = 4.50 in fm.
No description provided.