Date

Subject_areas

Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 93 (2004) 102301, 2004.
Inspire Record 636579 DOI 10.17182/hepdata.89443

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.

2 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . NaN values means no observation.

$\frac{\mathrm{d}N}{\mathrm{d}y}$ versus $y$ for $\mathrm{p}$,$\overline{\mathrm{p}}$,$\mathrm{p}-\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . The correction for the $\Lambda$ contribution is not straight forward since BRAHMS does not measure the $\Lambda$s and PHENIX and STAR only measures the $\Lambda$s at mid-rapidity! If one assumes that the mid-rapidity estimated in the paper of $$R=\frac{\Lambda-\bar{\Lambda}}{\mathrm{p}-\bar{\mathrm{p}}} = \frac{\Lambda}{\mathrm{p}} = \frac{\bar{\Lambda}}{\bar{\mathrm{p}}} = 0.93\pm 0.11(\mathrm{stat})\pm 0.25(\mathrm{syst}) $$ and the BRAHMS "acceptance factor" of $A=0.53\pm 0.05$ which includes both that only 64% decays to protons and that some are rejected by the requirement of the track to point back to the IP. The corrected $\mathrm{p}$ ($\bar{\mathrm{p}}$ or net-$\mathrm{p}$) is then : $$\left.\frac{\mathrm{d}N}{\mathrm{d}y}\right|_{\mathrm{corrected}} = \frac{\mathrm{d}N}{\mathrm{d}y}(1/(1+RA))= \frac{\mathrm{d}N}{\mathrm{d}y}\left(0.67\pm 0.05(\mathrm{stat})\pm 0.11(\mathrm{syst})\right)$$ Which can be used at all rapidities if one believes that R is constant. The fact that net-$\mathrm{K}=\mathrm{K}^{+}-\mathrm{K}^{-}$ follows net-$\mathrm{p}$ (see fx. talk by Djamel Ouerdane at QM04), seems to indicate that the net-$\Lambda$ follow the net-$\mathrm{p}$ trend and the correction is reasonable.


Transverse momentum spectra in Au + Au and d + Au collisions at s(NN)**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 91 (2003) 072305, 2003.
Inspire Record 622645 DOI 10.17182/hepdata.89442

We present spectra of charged hadrons from Au+Au and d+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from ${\rm p}+\bar{{\rm p}}$ collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at $\eta=0$ and $\eta=2.2$ evidence a strong suppression in the high $p_{T}$ region ($>$2 GeV/c). In contrast, the d+Au nuclear modification factor (at $\eta=0$) exhibits an enhancement of the high $p_T$ yields. These measurements indicate a high energy loss of the high $p_T$ particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.

8 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$, per centrality

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$ in $\mathrm{d}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=0$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$ versus $p_{\mathrm{T}}$ for $\mathrm{h}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $\eta=2.2$, per centrality

More…