We measure for the first time the differential photoproduction cross section $d\sigma/dt$ of the $a_2(1320)$ meson at an average photon beam energy of 8.5~GeV, using data with an integrated luminosity of 104~pb$^{-1}$ collected by the GlueX experiment. We fully reconstruct the $\gamma p \to \eta\pi^0 p$ reaction and perform a partial-wave analysis in the $a_2(1320)$ mass region with amplitudes that incorporate the linear polarization of the beam. This allows us to separate for the first time the contributions of natural- and unnatural-parity exchanges. These measurements provide novel information about the photoproduction mechanism, which is critical for the search for spin-exotic states.
$a_2(1320)$ parity asymmetry, $P_{\sigma}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section split into different reflectivity components, $\frac{d\sigma^+}{dt}$ and $\frac{d\sigma^-}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section in the m=-1 projection split into different reflectivity components, $\frac{d\sigma^+_{-1}}{dt}$ and $\frac{d\sigma^-_{-1}}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.
This paper reports a search for a light CP-odd scalar resonance with a mass of 20 GeV to 90 GeV in 13 TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider. The analysis assumes the resonance is produced via gluon-gluon fusion and decays into a $\tau^{+}\tau^{-}$ pair which subsequently decays into a fully leptonic $\mu^{+}\nu_{\mu} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$ or $e^{+}\nu_{e}\bar{\nu}_{\tau} \mu^-\bar{\nu}_{\mu}\nu_{\tau}$ final state. No significant excess of events above the predicted Standard Model background is observed. The results are interpreted within a flavour-aligned two-Higgs-doublet model, and a model-independent cross-section interpretation is also given. Upper limits at 95$%$ confidence level between 3.0 pb and 68 pb are set on the cross-section for producing a CP-odd Higgs boson that decays into a $\tau^+\tau^-$ pair.
Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$
Post-fit $m_\mathrm{MMC}$ distribution in the high-mass SR for the $m_A = 90\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. otal includes all backgrounds and the signal process. The high-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 1.0$ - $E_\mathrm{T}^\mathrm{miss} > 30\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 65\,\mathrm{GeV}$ - $35\,\mathrm{GeV} < m_\mathrm{MMC} < 130\,\mathrm{GeV}$
Expected and observed $95\%$ CL limits on the production cross-section for $gg\rightarrow A$ times the branching ratio for $A$ decaying into two $\tau$-leptons for $A$ boson masses ranging from $20$ to $90\,\mathrm{GeV}$.
This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.
Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.
The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
This Letter presents a search for highly ionizing magnetic monopoles in 262$~\mu$b$^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV collected by the ATLAS detector at the LHC. A new methodology that exploits the properties of clusters of hits reconstructed in the innermost silicon detector layers is introduced to study highly ionizing particles in heavy-ion data. No significant excess above the background, which is estimated using a data-driven technique, is observed. Using a nonperturbative semiclassical model, upper limits at 95% confidence level are set on the cross-section for pair production of monopoles with a single Dirac magnetic charge in the mass range of 20-150 GeV. The search significantly improves on the previous cross-section limits for production of low-mass monopoles in ultraperipheral Pb+Pb collisions.
Expected and observed cross-section upper limits computed using the CL$_{s}$ method for $|q_{m}| = 1 g_{\textrm{D}}$ and assuming FPA model
A search for heavy right-handed Majorana neutrinos is performed with the ATLAS detector at the CERN Large Hadron Collider, using the 140 $\mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected during Run 2. This search targets $t\bar{t}$ production, in which both top quarks decay into a bottom quark and a $W$ boson, where one of the $W$ bosons decays hadronically and the other decays into an electron or muon and a heavy neutral lepton. The heavy neutral lepton is identified through a decay into an electron or muon and another $W$ boson, resulting in a pair of same-charge same-flavor leptons in the final state. This paper presents the first search for heavy neutral leptons in the mass range of 15-75 GeV using $t\bar{t}$ events. No significant excess is observed over the background expectation, and upper limits are placed on the signal cross-sections. Assuming a benchmark scenario of the phenomenological type-I seesaw model, these cross-section limits are then translated into upper limits on the mixing parameters of the heavy Majorana neutrino with Standard Model neutrinos.
Definitions of different signal and control regions. The control regions are enriched in events from the following processes. ttW, heavy-flavor (HF) fake, photon-conversion (PC), and charge-flip (CF). The 'Z veto' is defined as $m_{ee}$ not in [$m_Z$ - 10 GeV, $m_Z$ + 10 GeV].
Post-fit event yields for the different background processes in the signal regions, as obtained from the background-only fit in the high-mass region.
Expected and observed upper limits on the signal cross-sections at 95% CL.
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> ATLAS public webpage of paper: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-03/">link</a><br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> Common: N E = N MU = 1, CHARGE E != CHARGE MU <li> NJETS >= 2, NBJETS >= 2 <li> NJETS >= 3, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 4 <li> NJETS >= 5, NBJETS >= 4 </ul><br/> <b>Objects definitions:</b> <ul> <li> LEP PT > 28 GeV, ABS ETARAP LEP < 2.5 <li> JET PT > 25 GeV, ABS ETARAP JET < 2.5, R JET = 0.4 <li> BJET: >=1 b-hadron with PT > 5 GeV is associated to the jet via ghost matching </ul><br/> <b>Particle level:</b><br/> <br/>Data from Table 06: <a href="153521?table="Fiducial xsec results>Fiducial xsec results </a><br/><br/> <u>1D:</u><br/> Data bootstraps: <ul> <li> Data from Figure 09: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥2b$">Bootstrap $N_{b-jets}$ in $≥2b$ </a> <li> Data from Figure 10a: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥3b$">Bootstrap $N_{b-jets}$ in $≥3b$ </a> <li> Data from Figure 10b: <a href="153521?table=Bootstrap $N_{c/l-jets}$ in $≥3b$">Bootstrap $N_{c/l-jets}$ in $≥3b$ </a> <li> Data from Figure 10c: <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥3b$">Bootstrap $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Figure 10d: <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Figure 11a: <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥3b$">Bootstrap $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Figure 11b: <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Figure 11c: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Figure 11d: <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Figure 12a: <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥3b$">Bootstrap $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Figure 12b: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 13a: <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥3b$">Bootstrap $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13b: <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13c: <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥3b$">Bootstrap $m(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 13d: <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥3b$">Bootstrap $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 14a: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 14b: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14c: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14d: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 15a: <a href="153521?table=Bootstrap $m(bb^{min\Delta R})$ in $≥4b$">Bootstrap $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15b: <a href="153521?table=Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$">Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15c: <a href="153521?table=Bootstrap $m(bb^{add})$ in $≥4b$">Bootstrap $m(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 15d: <a href="153521?table=Bootstrap $p_{T}(bb^{add})$ in $≥4b$">Bootstrap $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 01a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥3b$">Bootstrap $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Figure 01b (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Figure 02a (aux): <a href="153521?table=Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$">Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 02b (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥3b$">Bootstrap $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Figure 03a (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Figure 03b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Figure 04a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥3b$">Bootstrap $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Figure 04b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 05a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥3b$">Bootstrap $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Figure 05b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥3b$">Bootstrap $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Figure 05c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Figure 05d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Figure 06a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥4b$">Bootstrap $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Figure 06b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Figure 06c (axu): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Figure 06d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Figure 07a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥4b$">Bootstrap $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Figure 07b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{4})$ in $≥4b$">Bootstrap $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Figure 07c (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 07d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Figure 08a (aux): <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥4b$">Bootstrap $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 08b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 09a (aux): <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥4b$">Bootstrap $m(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 09b (aux): <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥4b$">Bootstrap $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 10a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥4b$">Bootstrap $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Figure 10b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 11a (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥4b$">Bootstrap $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Figure 11b (aux): <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥4b$">Bootstrap $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Figure 11c (aux): <a href="153521?table=Bootstrap min$\Delta R(bb)$ in $≥4b$">Bootstrap min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Figure 11d (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 12a (aux): <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Figure 12b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Figure 12c (aux): <a href="153521?table=Bootstrap $N_{l/c-jets}$ in $≥4b$">Bootstrap $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Figure 13a (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13b (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13c (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13d (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 14a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥4b$">Bootstrap $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Figure 14b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥4b$">Bootstrap $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Figure 14c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Figure 14d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Figure 15a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥4b$">Bootstrap $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Figure 15b (aux): <a href="153521?table=Bootstrap $|\eta(b_{4})|$ in $≥4b$">Bootstrap $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Figure 15c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Figure 15d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$ </a> </ul><br/> Measurements: <ul> <li> Data from Table 01 (aux): <a href="153521?table=Diff. XS $N_{b-jets}$ in $≥2b$">Diff. XS $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 02 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥3b$">Diff. XS $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 03 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥3b$">Diff. XS $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 04 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 05 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 06 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥3b$">Diff. XS $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 07 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 08 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 09 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 10 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥3b$">Diff. XS $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 11 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 12 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥3b$">Diff. XS $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 13 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 14 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥3b$">Diff. XS $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 15 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 16 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥3b$">Diff. XS $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 17 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 18 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥3b$">Diff. XS $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 19 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 20 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥3b$">Diff. XS $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 21 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥3b$">Diff. XS $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 22 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 23 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥3b$">Diff. XS $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 24 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 25 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥3b$">Diff. XS $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 26 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 27 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 28 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 29 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 30 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 31 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 32 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥4b$">Diff. XS $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 33 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥4b$">Diff. XS $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 34 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 35 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 36 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥4b$">Diff. XS $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 37 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 38 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 39 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 40 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥4b$">Diff. XS $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 41 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 42 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{4})$ in $≥4b$">Diff. XS $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 43 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 44 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥4b$">Diff. XS $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 45 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 46 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥4b$">Diff. XS $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 47 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 48 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥4b$">Diff. XS $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 49 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 50 (aux): <a href="153521?table=Diff. XS $|\eta(b_{4})|$ in $≥4b$">Diff. XS $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 51 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 52 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥4b$">Diff. XS $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 53 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 54 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥4b$">Diff. XS $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 55 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥4b$">Diff. XS $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 56 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 57 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥4b$">Diff. XS $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 58 (aux): <a href="153521?table=Diff. XS $m(bb^{min\Delta R})$ in $≥4b$">Diff. XS $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 59 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$">Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 60 (aux): <a href="153521?table=Diff. XS $m(bb^{add})$ in $≥4b$">Diff. XS $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 61 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{add})$ in $≥4b$">Diff. XS $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 62 (aux): <a href="153521?table=Diff. XS $min\Delta R(bb)$ in $≥4b$">Diff. XS $min\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 63 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 64 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥4b$">Diff. XS $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 65 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 66 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 67 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 68 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 69 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 70 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/> <u>2D:</u><br/> Correlation matrices: <ul> <li> Data from Table 71 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥2b$">Corr. mtrx $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 72 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥3b$">Corr. mtrx $N_{b-jets}$ in $≥3b$ </a> <li> Data from Table 73 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥3b$">Corr. mtrx $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 74 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥3b$">Corr. mtrx $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 75 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 76 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 77 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 78 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 79 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 80 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 81 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥3b$">Corr. mtrx $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 82 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 83 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 84 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 85 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 86 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 87 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥3b$">Corr. mtrx $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 88 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 89 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 90 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 91 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥3b$">Corr. mtrx $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 92 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 93 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 94 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 95 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 96 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥3b$">Corr. mtrx $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 97 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 98 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 99 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 100 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 101 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 102 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 103 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥4b$">Corr. mtrx $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 104 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥4b$">Corr. mtrx $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 105 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 106 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 107 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 108 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 109 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 110 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 111 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥4b$">Corr. mtrx $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 112 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 113 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{4})$ in $≥4b$">Corr. mtrx $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 114 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 115 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 116 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 117 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 118 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 119 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥4b$">Corr. mtrx $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 120 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 121 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{4})|$ in $≥4b$">Corr. mtrx $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 122 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 123 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 124 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 125 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥4b$">Corr. mtrx $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 126 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 127 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 128 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 129 (aux): <a href="153521?table=Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 130 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 131 (aux): <a href="153521?table=Corr. mtrx $m(bb^{add})$ in $≥4b$">Corr. mtrx $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 132 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 133 (aux): <a href="153521?table=Corr. mtrx min$\Delta R(bb)$ in $≥4b$">Corr. mtrx min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 134 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 135 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥4b$">Corr. mtrx $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 136 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 137 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 138 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 139 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 140 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 141 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/>
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
A search for a light charged Higgs boson produced in decays of the top quark, $t \to H^\pm b$ with $H^\pm \to cs$, is presented. This search targets the production of top-quark pairs $t\bar{t} \to Wb H^\pm b$, with $W \to \ell\nu$ ($\ell = e, \mu$), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits $b$-quark and $c$-quark identification techniques as well as multivariate methods to suppress the dominant $t\bar{t}$ background. The data analysed correspond to 140 $\text{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction $\mathscr{B}(t\to H^\pm b)$, assuming $\mathscr{B}(t\to Wb) + \mathscr{B}(t \to H^\pm (\to cs)b)=1.0$, are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 GeV and 168 GeV.
Distributions of the dijet mass. The processes $t\bar{t}$(allHad), $tW$, Single top, $t\bar{t}H$, Other top, $W$ + jets, $Z$ + jets, and $VV$ listed are combined with the multijet background in the ‘Other’ category. The uncertainty band represents the combined statistical and systematic uncertainty of the prediction. Overlaid are the shapes for the $H^{\pm}_{80}$ and $H^{\pm}_{150}$ signal samples normalised to the total background prediction.
Data and background yields after the background-only fit of the BDT-score distribution for the $130\,$GeV signal mass BDT training. For comparison, the expected signal yield for $\mathscr{B}_{H^{\pm}}=1.0\%$ is added.
Observed (solid line) and expected (dotted line) upper limits on $\mathscr{B}_{H^{\pm}}$ for charged Higgs boson with masses between $60\,$GeV and $168\,$GeV, assuming $\mathscr{B}(t \to H^{\pm}(\to cs) b) = 1.0$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ variations around the expected upper limit are indicated by the green and yellow bands, respectively.