pi--p Elastic Scattering at 1.44 Bev

Chretien, M. ; Leitner, J. ; Samios, N.P. ; et al.
Phys.Rev. 108 (1957) 383-389, 1957.
Inspire Record 45962 DOI 10.17182/hepdata.26863

An investigation of π−+p elastic scattering, made in a liquid propane bubble chamber, is reported. Identification of events is made on the basis of kinematics. The problem of contamination by pion scattering from protons bound in carbon is considered in some detail; it is shown that the latter requires a correction of only 4±2.5% of the total number of events. The angular distribution is presented. It shows a large diffraction peak at small angles and an approximately isotropic plateau over the backward hemisphere. The forward peak is fitted to a black-sphere diffraction pattern with a radius of (1.08±0.06)×10−13 cm. The total elastic cross section is found to be σe=10.1±0.80 mb.

1 data table

No description provided.


Cross Sections for Antiprotons in Hydrogen, Beryllium, Carbon, and Lead

Cork, Bruce ; Lambertson, Glen R. ; Piccioni, Oreste ; et al.
Phys.Rev. 107 (1957) 248-256, 1957.
Inspire Record 944999 DOI 10.17182/hepdata.26942

A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.

4 data tables
More…

Scattering of 151- and 188-Mev Positive Pions by Protons

Homa, George ; Goldhaber, Gerson ; Lederman, Leon M. ;
Phys.Rev. 93 (1954) 554-561, 1954.
Inspire Record 944934 DOI 10.17182/hepdata.26417

A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).


Production of $pi^0$ Mesons by gamma-Rays on Hydrogen

Silverman, A. ; Stearns, M. ;
Phys.Rev. 88 (1952) 1225-1230, 1952.
Inspire Record 944938 DOI 10.17182/hepdata.26460

The production of π∘ mesons in the reaction γ+p→π∘+p is investigated as a function of the incident γ-ray energy in the region from 200 Mev to 300 Mev. For the π∘ emitted at approximately 90° laboratory angle, the differential cross section can be represented by (dσπ∘dΩ)π2=C(K−145)1.9±0.4, where K= energy of incident γ-ray in Mev. The approximate threshold for the reaction is 145 Mev. The ratio of the cross section at 60° laboratory angle to that at 90° laboratory angle, for γ-rays between 250 Mev and 300 Mev, is 1.45±0.25.

1 data table

No description provided.