K^0_S and {\Lambda} production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 111 (2013) 222301, 2013.
Inspire Record 1243863 DOI 10.17182/hepdata.61857

The ALICE measurement of K$^0_{\rm S}$ and $\rm\Lambda$ production at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV is presented. The transverse momentum ($p_{\rm T}$) spectra are shown for several collision centrality intervals and in the $p_{\rm T}$ range from 0.4 GeV/$c$ (0.6 GeV/$c$ for $\rm\Lambda$) to 12 GeV/$c$. The $p_{\rm T}$ dependence of the $\rm \Lambda$/K$^0_{\rm S}$ ratios exhibits maxima in the vicinity of 3 GeV/$c$, and the positions of the maxima shift towards higher $p_{\rm T}$ with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate $p_{\rm T}$ is not observed in pp interactions at sqrt(s) = 0.9 TeV and at sqrt(s) = 7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured $p_{\rm T}$ spectra above 2 GeV/$c$ progressively decouple from hydrodynamical-model calculations. For higher values of $p_{\rm T}$, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the $p_{\rm T}$ dependence of the $\rm\Lambda$/K$^0_{\rm S}$ ratio.

23 data tables

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 0.0-5.0%.

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 5.0-10.0%.

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 10.0-20.0%.

More…

Measurement of inelastic, single- and double-diffraction cross sections in proton--proton collisions at the LHC with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 73 (2013) 2456, 2013.
Inspire Record 1181770 DOI 10.17182/hepdata.68096

Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X < 200$ GeV/$c^2$) $\sigma_{\rm SD}/\sigma_{\rm INEL} = 0.21 \pm 0.03, 0.20^{+0.07}_{-0.08}$, and $0.20^{+0.04}_{-0.07}$, respectively at centre-of-mass energies $\sqrt{s} = 0.9, 2.76$, and 7~TeV; for double diffraction (for a pseudorapidity gap $\Delta\eta > 3$) $\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\sqrt{s} = 0.9, 2.76$, and 7~TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi)$ mb at $\sqrt{s} =$ 2.76~TeV and $73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi)$ mb at $\sqrt{s}$ = 7~TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.

5 data tables

Production ratios of SD with $M_{X} < 200 GeV/c^2$ to INEL.

Production ratios of DD with $\Delta\eta >3$ to INEL.

Single diffraction cross-section for $M_{X} < 200 GeV/c^2$.

More…

Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 191, 2012.
Inspire Record 1115187 DOI 10.17182/hepdata.62077

The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.

6 data tables

Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.

Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.

Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.

More…

D_s meson production at central rapidity in proton--proton collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 718 (2012) 279-294, 2012.
Inspire Record 1126963 DOI 10.17182/hepdata.62306

The $p_{\rm T}$-differential inclusive production cross section of the prompt charm-strange meson $\rm D_s^+$ in the rapidity range $|y|<0.5$ was measured in proton-proton collisions at $\sqrt{s}=7$ TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of $2.98 \times 10^8$ events collected with a minimum-bias trigger. The corresponding integrated luminosity is $L_{\rm int}=4.8$/nb. Reconstructing the decay ${\rm D_s^{+}\to \phi\pi^+}$, with $\phi\to {\rm K}^-{\rm K}^+$, and its charge conjugate, about 480 ${\rm D_s^{\pm}}$ mesons were counted, after selection cuts, in the transverse momentum range $2<p_{\rm T}<12$ Gev/$c$. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$) were determined both as a function of $p_{\rm T}$ and integrated over $p_{\rm T}$ after extrapolating to full $p_{\rm T}$ range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in $\rm e^+e^-$, ep and pp interactions at various centre-of-mass energies.

7 data tables

pT-differential inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV.

pT-integrated inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV. The latter three systematic uncertainties arise from extrapolating the visible cross section to the full pT range, luminosity, and the branching ratio, respectively.

Ratio of D^+ to D^0 meson production cross sections in |y| < 0.5 as a function of pT.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044910, 2013.
Inspire Record 1222333 DOI 10.17182/hepdata.61925

In this paper measurements are presented of $\rm \pi$$^+$, $\rm \pi$$^-$, K$^+$, K$^-$, p and $\overline{\rm p}$ production at mid-rapidity < 0.5, in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV as a function of centrality. The measurement covers the transverse momentum ($p_{\rm T}$) range from 100, 200, 300 MeV/$c$ up to 3, 3, 4.6 GeV/$c$, for $\rm\pi$, K, and p respectively. The measured $p_{\rm T}$ distributions and yields are compared to expectations based on hydrodynamic, thermal and recombination models. The spectral shapes of central collisions show a stronger radial flow than measured at lower energies, which can be described in hydrodynamic models. In peripheral collisions, the $p_{\rm T}$ distributions are not well reproduced by hydrodynamic models. Ratios of integrated particle yields are found to be nearly independent of centrality. The yield of protons normalized to pions is a factor ~1.5 lower than the expectation from thermal models.

57 data tables

pT-differential invariant yield of pion+ and pion- for centrality 0-5%. These data are also available from http://hepdata.cedar.ac.uk/view/ins1126966.

pT-differential invariant yield of pion+ and pion- for centrality 5-10%.

pT-differential invariant yield of pion+ and pion- for centrality 10-20%.

More…

Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at {\surd}sNN = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 252302, 2012.
Inspire Record 1093519 DOI 10.17182/hepdata.62076

The first measurement of neutron emission in electromagnetic dissociation of $^{208}$Pb nuclei at the LHC is presented. The measurement is performed using the neutron Zero Degree Calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with neutron emission are $\sigma_{\rm single\ EMD} = 187.4\pm0.2$ (stat.) $^{+13.2} _{-11.2}$ (syst.) b and $\sigma_{\rm mutual\ EMD} = 5.7\pm0.1$ (stat.) $\pm$0.4 (syst.) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.

4 data tables

Single EMD -> at least one neutron is emitted by a given Pb nucleus disregarding the fate of the other nucleus.

Mutual EMD -> at least one neutron is emitted by both Pb nuclei.

Measurement of the total hadronic Pb-Pb cross section at 2.76 TeV per nucleon.

More…

Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 670 (2009) 313-320, 2009.
Inspire Record 778611 DOI 10.17182/hepdata.73669

The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.

2 data tables

Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.

Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.