Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.
Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.
Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.
We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.
No description provided.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton scattering. The diffractive contribution to the proton structure function is evaluated as a function of the appropriate deep-inelastic scattering variables using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. The dependence of this contribution on x-pomeron is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of a factorised structure function is presented. This structure function is observed to be consistent with scale invariance.
No description provided.
No description provided.
No description provided.
Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.
No description provided.
The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.
No description provided.
The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.
JINR.
BNL-815.
CERN-EMU-001.
We have conducted a search for bound states of a negative pion and a number of neutrons (pineuts) using the E814 spectrometer. A beam of Si28 at a momentum of 14.6A GeV/c was used to bombard targets of Al, Cu, Sn, and Pb. We describe our experimental technique, present measured upper limits for pineut production, and discuss the significance of our results.
AUTHORS NAMED CHARGED- BY PINEUT. Here ALL means the total number of interactions.
An investigation of the production of neutron-rich isotopes from the fragmentation of Si28 projectiles at plab=14.6 GeV/c per nucleon was performed using the BNL-AGS-E814 spectrometer. We have measured the inclusive production cross sections of neutron-rich fragments (6He, He8, Li8, Li9, Be10, Be11, and B13). We have also measured the transverse momentum distributions for He6 and Li9, and the forward and transverse energy distributions associated with He6 production. The momentum distributions were analyzed in the context of the Goldhaber model. The question of whether the fragments are produced in the decay of the projectile following its electromagnetic excitation was also investigated.
No description provided.
We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.
Statistical and systematic errors are addet in quadrature.
Statistical and systematic errors are addet in quadrature.
Statistical and systematic errors are addet in quadrature.
Systematic measurements of π− elastic scattering on C12 above the Δ-resonance region are reported. The differential cross sections were measured at 610, 710, 790, and 895 MeV/c over an angular range from 5° to 50°. The obtained data were compared with the first-order optical potential model. In the forward region, agreement with the calculation increases with the incident momentum. In the backward region, however, the calculation underestimates the data. The total cross section was extracted, and its energy dependence shows that the effect of Fermi averaging is important.
No description provided.
No description provided.
No description provided.