Measurement of the p anti-p ---> t anti-t production cross- section and the top quark mass at s**(1/2) = 1.96-TeV in the all-hadronic decay mode

The CDF collaboration Aaltonen, T. ; Abulencia, A. ; Adelman, J. ; et al.
Phys.Rev.D 76 (2007) 072009, 2007.
Inspire Record 753979 DOI 10.17182/hepdata.42731

We report the measurements of the t anti-t production cross section and of the top quark mass using 1.02 fb^-1 of p anti-p data collected with the CDFII detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma_{tt}=8.3+-1.0(stat.)+2.0-1.5(syst.)+-0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0+-2.2(stat.)+-4.8(syst.) GeV/c^2 is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.

1 data table match query

Total cross section measurement. The second DSYS error is the uncertainty on the luminosity.


Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV using kinematic fitting of b-tagged lepton + jet events

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.D 71 (2005) 072005, 2005.
Inspire Record 658758 DOI 10.17182/hepdata.41883

We report a measurement of the ttbar production cross section using the CDF II detector at the Fermilab Tevatron. The data consist of events with an energetic electron or muon, missing transverse energy, and three or more hadronic jets, at least one of which is identified as a b-quark jet by reconstructing a secondary vertex. The background fraction is determined from a fit of the transverse energy of the leading jet. Using 162+-10 /pb of data, the total cross section is found to be 6.0+-1.6(stat.)+-1.2(syst.) pb, which is consistent with the Standard Model prediction.

1 data table match query

Cross section for different assumed TOP quark masses.


Measurement of the cross section for t anti-t production in p anti-p collisions using the kinematics of lepton + jets events

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.D 72 (2005) 052003, 2005.
Inspire Record 681525 DOI 10.17182/hepdata.42764

We present a measurement of the top pair production cross section in $p\bar{p}$ collisions at $\sqrt{s}$=1.96 TeV. We collect a data sample with an integrated luminosity of 194$\pm$11 pb$^{-1}$ with the CDF II detector at the Fermilab Tevatron. We use an artificial neural network technique to discriminate between top pair production and background processes in a sample of 519 lepton+jets events, which have one isolated energetic charged lepton, large missing transverse energy and at least three energetic jets. We measure the top pair production cross section to be $\sigma_{t\bar{t}}= 6.6pm 1.1 \pm 1.5$ pb, where the first uncertainty is statistical and the second is systematic.

1 data table match query

TTBAR production cross section.


Measurement of the $W^+W^-$ Production Cross Section and Search for Anomalous $WW\gamma$ and $WWZ$ Couplings in $p \bar p$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.Lett. 104 (2010) 201801, 2010.
Inspire Record 841021 DOI 10.17182/hepdata.54291

This Letter describes the current most precise measurement of the $W$ boson pair production cross section and most sensitive test of anomalous $WW\gamma$ and $WWZ$ couplings in $p \bar p$ collisions at a center-of-mass energy of 1.96 TeV. The $WW$ candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb$^{-1}$ of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of $320 \pm 47$ events. The measured total cross section is $\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)}$ pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous $WW\gamma$ and $WWZ$ couplings.

1 data table match query

Measured cross section for inclusive W+ W- production.


Measurement of the WW+WZ Production Cross Section Using the Lepton+Jets Final State at CDF II

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.Lett. 104 (2010) 101801, 2010.
Inspire Record 837610 DOI 10.17182/hepdata.54292

We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.

3 data tables match query

Cross section from the combined analysis.. Error is combined statistics and systematics.

Cross section from method one.

Cross section from method two.


A study of the associated production of photons and b-quark jets in p-pbar collisions at sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052006, 2010.
Inspire Record 840503 DOI 10.17182/hepdata.64152

The cross section for photon production in association with at least one jet containing a $b$-quark hadron has been measured in proton antiproton collisions at $\sqrt{s}=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 340 pb$^{-1}$ collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy $E_T^{\gamma}$, $d \sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet)/$d E_T^{\gamma}$ and the total cross section $\sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet/ $E_T^{\gamma}> 20$ GeV) are measured. Comparisons to a next-to-leading order prediction of the process are presented.

2 data tables match query

b + photon cross section as a function of photon ET.

b + photon total cross section for photon ET > 20 GeV.


Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 052002, 2010.
Inspire Record 845783 DOI 10.17182/hepdata.56641

A measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 $fb^{-1}$ is: $\sigma_{t\bar{t}}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.

1 data table match query

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.96-TeV using lepton plus jets events with semileptonic B decays to muons

The CDF collaboration Acosta, D. ; Adelman, J. ; Affolder, T. ; et al.
Phys.Rev.D 72 (2005) 032002, 2005.
Inspire Record 683844 DOI 10.17182/hepdata.42761

We present a measurement of the $\ttbar$ production cross section using $194 \mathrm{pb^{-1}}$ of CDF II data using events with a high transverse momentum electron or muon, three or more jets, and missing transverse energy. The measurement assumes 100% $t\to Wb$ branching fraction. Events consistent with $\ttbar$ decay are found by identifying jets containing heavy flavor semileptonic decays to muons. The dominant backgrounds are evaluated directly from the data. Based on 20 candidate events and an expected background of 9.5$\pm$1.1 events, we measure a production cross section of $5.3\pm3.3^{+1.3}_{-1.0} \mathrm{pb}$, in agreement with the standard model.

1 data table match query

TTBAR production cross section.


Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 81 (2010) 092002, 2010.
Inspire Record 846167 DOI 10.17182/hepdata.56640

We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.

1 data table match query

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052011, 2010.
Inspire Record 844530 DOI 10.17182/hepdata.56660

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.

1 data table match query

Measured cross section for a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.