Showing 3 of 3 results
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Binning used for the measured $\sum_{n_{\text{ch}}} p_{\text{T}}$ in bins of $n_\text{ch}$ observable.
Event yields obtained after the event selection. The expected event yields from $t\bar{t}$ production and the various background processes are compared with the observed event yield. The fractional contributions from $t\bar{t}$ production and the background processes to the expected event yield is given in %. The processes labelled by `Others' include production of $Z$+jets and diboson background events. The uncertainties include the MC statistical uncertainty and the normalisation uncertainty.
Summary of the estimated pile-up scale factors $c_{\text{PU}}$, parameterisd in $\mu$ and $n_{\text{trk,out}}$. All values have a statistical precision of 0.01.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The total pile-up scale-factor relative uncertainty parameterised in $\mu$ and $n_\text{trk,out}$ and expressed in percent.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
Normalised differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
The $\chi^2$ and NDF for the measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. The values corresponding to the `Total' scenario are given. In this scenario, only uncertainties described in Section 8 of the paper are included, while the extra theory uncertainties defined in Section 9 are omitted.
The $\chi^2$ and NDF for the measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. The values corresponding to the `De-correlate modelling' scenario are given. This scenario uses the detector covariance matrix, and adding modelling uncertainties, scale variations in the matrix element and parton shower as well as the $h_{\text{damp}}$ variation only to the diagonal elements of the covariance matrix.
The $\chi^2$ and NDF for measured absolute differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
The $\chi^2$ and NDF for the measured absolute differential cross-sections obtained by comparing the different predictions with the unfolded data. The values corresponding to the `Total' scenario are given. In this scenario, only uncertainties described in Section 8 of the paper are included, while the extra theory uncertainties defined in Section 9 are omitted.
The $\chi^2$ and NDF for the measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. The values corresponding to the `De-correlate modelling' scenario are given. This scenario uses the detector covariance matrix, and adding modelling uncertainties, scale variations in the matrix element and parton shower as well as the $h_{\text{damp}}$ variation only to the diagonal elements of the covariance matrix.
Absolute differential cross-section as a function of $n_\text{ch}$.
Absolute differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
Covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix of the normalised differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ vs. $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix of the normalised differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the normalised double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ vs. $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the normalised differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix of the absolute differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ vs. $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical, systematic uncertainties, and uncertainties in the theoretical predictions.
Covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix of the absolute differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $40 \leq n_\text{ch} < 60$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $60 \leq n_\text{ch} < 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Covariance matrix between the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ and the absolute double-differential cross-section as function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} \geq 80$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $n_\text{ch}$ vs. $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Global covariance matrix of the absolute differential cross-section as function of $n_\text{ch}$ and $\sum_{n_{\text{ch}}} p_{\text{T}}$ in $\sum_{n_{\text{ch}}} p_{\text{T}}$ at particle level, accounting for the statistical and systematic uncertainties, but excluding uncertainties in the theoretical predictions.
Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector bosonor a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of $0.99 \pm 0.14$ improves on the precision of the ATLAS measurement at $\sqrt{s} = 7$ and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be $55 \pm 10$ fb, which is in good agreement with the Standard Model prediction of $64 \pm 2$ fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. No significant deviations from a wide array of Standard Model predictions are observed.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of YRAP(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PTTHRUST(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of COS(THETA*). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of DELTAYRAP(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of MULT(JET,PT>30 GEV). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of MULT(JET,PT>50 GEV). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(JET1). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(JET2). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of HT. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of YRAP(JET1). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of YRAP(JET2). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of M(2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of DELTAYRAP(2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of ABSDPHI(2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of DPHI(2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of DPHI(2GAMMA,2JET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of TAUJET. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of SUM(TAUJET). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA) [NJET=0,PT>30 GEV]. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA) [NJET=1,PT>30 GEV]. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA) [NJET=2,PT>30 GEV]. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
Measured differential cross section with associated uncertainties as a function of PT(2GAMMA) [NJET>=3,PT>30 GEV]. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.
The measured cross sections or cross section limits of the diphoton, VBF-enhanced, Nlepton $\geq$ 1, high $E_{T}^{miss}$, and ttH-enhanced fiducial regions are shown.
Measured differential cross section with associated uncertainties as a function of diphoton transverse momentum in bins of ABS(COS(THETA*)). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.Each systematic uncertainty sources is fully uncorrelated with the other sources.
Non-perturbative correction factors in percent accounting for the impact of hadronisation and the underlying event activity for all measured variables and fiducial regions. Regions of phase space where no reliable estimate could be obtained are listed as 100 without uncertainties. Uncertainties are evaluated by deriving these factors using different generators and tunes as described in the text. No factor are given for the Nlepton $\geq$ 1 and High-$E_{T}^{miss}$ fiducial regions as the gluon fusion contamination in both is negligible.
Isolation efficiencies in percent for gluon fusion $H\rightarrow\gamma\gamma$ for each fiducial region/variable bin measured in this analysis. The isolation efficiency is defined as the probability for both photons to fulfil the isolation criteria (as described in Section 9.1) for events that pass the diphoton kinematic criteria. Regions of phase space where no reliable estimate could be obtained are listed as 100 without uncertainties. Uncertainties are assigned in the same way as for the non-perturbative correction factors: by varying the fragmentation and underlying event modelling. These factors can be multiplied by the kinematic acceptance factors (see Table 29) to extrapolate an inclusive gluon fusion Higgs prediction to the fiducial volume used in this analysis. No factors for the Nlepton $\geq$ 1 and High $E_{T}^{miss}$ fiducial regions are provided as the gluon fusion contamination is negligible.
Combined non-perturbative (Table 27) and particle-level isolation correction factors (Table 28) in percent accounting for the impact of hadronisation and the underlying event activity for all measured variables and fiducial regions. Regions of phase space where no reliable estimate could be obtained are listed as 100 without uncertainties. The uncertainties on the combined values properly take into account the correlations between both multiplicative factors.
Diphoton kinematic acceptances in percent for gluon-gluon fusion for the diphoton fiducial region and all differential variable bins studied in this paper, defined as the probability to fulfill the diphoton kinematic criteria: $p_{T}$/$m_{\gamma\gamma}$ < 0.35 (0.25) for the leading (subleading) photon and $|\eta_{\gamma\gamma}|$ < 2.37. The factors are evaluated using the Powheg NNLOPSevent generator. Uncertainties are taken from PDF variations. QCD scale variations have a negligible impact on these factors. The range of each bin is given in Table 26.
observed statistical correlations between pTyy, Njets, mjj, |DeltaPhijj| and pTj1
ggH default MC + XH predictions
XH ( = VBF + VH + ttH + bbH ) MC predictions
Best-fit values and uncertainties of the production-mode cross sections times branching ratio.
Best-fit values and uncertainties of the simplified template cross sections times branching ratio.
Observed correlations between the measured simplified template cross sections, including both the statistical and systematic uncertainties.
Best-fit values and uncertainties of the simplified template cross sections times branching ratio.
Observed correlations between the measured simplified template cross sections, including both the statistical and systematic uncertainties.
Observed correlations between the measured simplified template cross sections, including both the statistical and systematic uncertainties.
Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.
Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.
Definition of the fiducial phase space.
The seven input variables to the NN ordered by their discriminating power. The jet that is not $b$-tagged is referred to as $\textit{untagged}~$jet.
Event yields for the different processes estimated with the fit to the $O_\mathrm{NN}$ distribution compared to the numbers of observed events. Only the statistical uncertainties are quoted. The $Z,VV+\mathrm{jets}$ contributions and the multijet background are fixed in the fit; therefore no uncertainty is quoted for these processes.
Detailed list of the contribution from each source of uncertainty to the total uncertainty in the measured values of $\sigma_{\mathrm{fid}}(tq)$ and $\sigma_{\mathrm{fid}}(\bar tq)$. The estimation of the systematic uncertainties has a statistical uncertainty of $0.3\%$. Uncertainties contributing less than $0.5\%$ are marked with ‘<0.5’.
Significant contributions to the total relative uncertainty in the measured value of $R_{t}$. The estimation of the systematic uncertainties has a statistical uncertainty of $0.3~\%$. Uncertainties contributing less than $0.5~\%$ are not shown.
Slopes $a$ of the mass dependence of the measured cross$-$sections.
Predicted (post-fit) and observed event yields for the signal region (SR), after the requirement on the neural network discriminant, $O_{\mathrm{NN}}~>~0.8$. The multijet background prediction is obtained from the fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution described in Section 6, while all the other predictions and uncertainties are derived from the total cross$-$section measurement. In some cases there is no uncertainty quoted. In these cases the uncertainty is < 0.5.
Predicted (post-fit) and observed event yields for the signal region (SR), after the requirement on the second neural network discriminant, $O_{\mathrm{NN2}}~>~0.8$. The multijet background prediction is obtained from the fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution described in Section 6, while all the other predictions and uncertainties are derived from the total cross$-$section measurement. In some cases there is no uncertainty quoted. In these cases the uncertainty is < 0.5.
Migration matrix for $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at the particle level. The pseudo top quark is shown on the $y$-axis and the reconstructed variable is shown on the $x$-axis.
Migration matrix for $p_{\mathrm{T}}(t)$ at the parton level. The parton-level quark is shown on the $y$-axis and the reconstructed variable is shown on the $x$-axis.
Migration matrix for $|y(\hat{t\hspace{-0.2mm}})|$ at the particle level. The pseudo top quark is shown on the $y$-axis and the reconstructed variable is shown on the $x$-axis.
Migration matrix for $|y(t)|$ at the parton level. The parton-level quark is shown on the $y$-axis and the reconstructed variable is shown on the $x$-axis.
Uncertainties in the normalisations of the different backgrounds for all processes, as derived from the total cross-section measurement.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $p_{\mathrm{T}}(t)$ at parton level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $p_{\mathrm{T}}(t)$ at parton level.
Absolute and normalised unfolded differential $tq$ production cross$-$section as a function of $|y(t)|$ at parton level.
Absolute and normalised unfolded differential $\bar tq$ production cross$-$section as a function of $|y(t)|$ at parton level.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ for $tq$ events(at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ for $ \bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ for $ \bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ for $tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ for $\bar tq$ events (at the particle level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(t)$ for $tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $p_{\mathrm{T}}(t)$ for $ \bar tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(t)$ for $tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $p_{\mathrm{T}}(t)$ for $ \bar tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(t)|$ for $tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the absolute differential cross-section as a function of $|y(t)|$ for $\bar tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(t)|$ for $tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Statistical correlation matrix for the normalised differential cross-section as a function of $|y(t)|$ for $\bar tq$ events (at the parton level). It includes the statistical uncertainty due to the number of data events and MC statistics.
Fiducial acceptance $A_{\mathrm{fid}}$ for different $t$-channel single top-quark MC samples. $^{\mathrm{(a)}}$ Calculation taken from AcerMC $+$ $\mathrm{P{\scriptsize YTHIA}6}$. $^{\mathrm{(b)}}$ Calculation taken from $\mathrm{P{\scriptsize OWHEG}}$-$\mathrm{B{\scriptsize OX}}$ $+$ $\mathrm{P{\scriptsize YTHIA}6}$.
Fiducial acceptance $A_{\mathrm{fid}}$ for different $t$-channel single top-antiquark MC samples. $^{\mathrm{(a)}}$ Calculation taken from AcerMC $+$ $\mathrm{P{\scriptsize YTHIA}6}$. $^{\mathrm{(b)}}$ Calculation taken from $\mathrm{P{\scriptsize OWHEG}}$-$\mathrm{B{\scriptsize OX}}$ $+$ $\mathrm{P{\scriptsize YTHIA}6}$.
Uncertainties for the absolute differential $tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level per bin ([0,35,50,75,100,150,200,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level per bin ([0,35,50,75,100,150,200,300] GeV) in percent of $\left( \dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $\bar tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level per bin ([0,35,50,75,100,150,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})}$.
Uncertainties for the normalised differential $\bar tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})$ at particle level per bin ([0,35,50,75,100,150,300] GeV) in percent of $\left( \dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{t\hspace{-0.2mm}})}$.
Uncertainties for the absolute differential $tq$ cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level per bin ([0,0.15,0.3,0.45,0.7,1.0,1.3,2.2]) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(\hat{t\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $tq$ cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level per bin ([0,0.15,0.3,0.45,0.7,1.0,1.3,2.2]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(\hat{t\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $\bar tq$ cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level per bin ([0,0.15,0.3,0.45,0.7,1.0,1.3,2.2]) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(\hat{t\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $\bar tq$ cross-section as a function of $|y(\hat{t\hspace{-0.2mm}})|$ at particle level per bin ([0,0.15,0.3,0.45,0.7,1.0,1.3,2.2]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(\hat{t\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level per bin ([30,45,60,75,100,150,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level per bin ([30,45,60,75,100,150,300] GeV) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $\bar tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level per bin ([30,45,60,75,100,150,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $\bar tq$ cross-section as a function of $p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})$ at particle level per bin ([30,45,60,75,100,150,300] GeV) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(\hat{j\hspace{-0.2mm}})}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $tq$ cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level per bin ([0.0, 1.2, 1.7, 2.2, 2.7, 3.3, 4.5]) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(\hat{j\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $tq$ cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level per bin ([0.0, 1.2, 1.7, 2.2, 2.7, 3.3, 4.5]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(\hat{j\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $\bar tq$ cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level per bin ([0.0, 1.2, 1.7, 2.2, 2.7, 3.3, 4.5]) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(\hat{j\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $\bar tq$ cross-section as a function of $|y(\hat{j\hspace{-0.2mm}})|$ at particle level per bin ([0.0, 1.2, 1.7, 2.2, 2.7, 3.3, 4.5]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(\hat{j\hspace{-0.2mm}})|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $tq$ cross-section as a function of $p_{\mathrm{T}}(t)$ at parton level per bin ([0,50,100,150,200,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(t)}$.
Uncertainties for the normalised differential $tq$ cross-section as a function of $p_{\mathrm{T}}(t)$ at parton level per bin ([0,50,100,150,200,300] GeV) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}p_{\mathrm{T}}(t)}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $\bar tq $ cross-section as a function of $p_{\mathrm{T}}(t)$ at parton level per bin ([0,50,100,150,300] GeV) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(t)}$.
Uncertainties for the normalised differential $\bar tq $ cross-section as a function of $p_{\mathrm{T}}(t)$ at parton level per bin ([0,50,100,150,300] GeV) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}p_{\mathrm{T}}(t)}$.
Uncertainties for the absolute differential $ tq $ cross-section as a function of $|y(t)|$ at parton level per bin ([0,0.3,0.7,1.3,2.2]) in percent of $\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(t)|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the normalised differential $ tq $ cross-section as a function of $|y(t)|$ at parton level per bin ([0,0.3,0.7,1.3,2.2]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(tq)}{\mathrm{d}|y(t)|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
Uncertainties for the absolute differential $ \bar tq $ cross-section as a function of $|y(t)|$ at parton level per bin ([0,0.3,0.7,1.3,2.2]) in percent of $\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(t)|}$.
Uncertainties for the normalised differential $ \bar tq $ cross-section as a function of $|y(t)|$ at parton level per bin ([0,0.3,0.7,1.3,2.2]) in percent of $\left(\dfrac{1}{\sigma}\right)\dfrac{\mathrm{d}\sigma(\bar tq)}{\mathrm{d}|y(t)|}$. If the uncertainty reported in the paper is "0.0" for both the $\textit{plus}$ and $\textit{minus}$ variation, the value "+0.01" is assigned to the $\textit{plus}$ variation for technical reasons.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.