The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.
Total integrated cross section.
The differential PT cross section as a function of PT.
Measurements are presented of differential cross-sections for top quark pair production in pp collisions at sqrt(s) = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05/fb recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The background-subtracted differential distributions are corrected for detector effects, normalized to the total inclusive top quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10% and 20% and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed.
Relative differential cross-section (1/SIG)*D(SIG)/DM(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DPT(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DYRAP(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.
The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.
The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.
The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.
The ALICE Collaboration has measured the inclusive production of muons from heavy flavour decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at $\sqrt {s_{NN}}$ = 2.76 TeV. The $p_{\rm T}$-differential inclusive cross section of muons from heavy flavour decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < $p_{\rm T}$ < 10 GeV/$c$. The suppression shows no significant $p_{\rm T}$ dependence.
Transverse momentum differential inclusive cross section of muons from heavy-flavour decays in the rapidity range 2.5-4.
RAA of muons from heavy-flavour decays in the rapidity range 2.5-4 as a function of PT in the 0-10% and 40-80% centrality classes. The second (sys) error is the separate normalization error for each class.
RAA of muons from heavy-flavour decays as a function of the mean number of participating nucleons, NPART, in the rapidity range 2.5-4.0 and PT 6-10 GeV. The first (sys) error is the correlated systematic error and the second is the uncorrelated systematic error.
The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.
Production rate for PI0 production in the rapidity range 8.9-9.0.
Production rate for PI0 production in the rapidity range 9.0-9.2.
Production rate for PI0 production in the rapidity range 9.2-9.4.
The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.
Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.
Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.
Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.
The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^0 X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^0)<4$, $3<p_T(D^0)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D_s^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D_s^+)<4$, $3<p_T(D_s^+)<12$ GeV/$c$ region.
The differential cross-section for the inclusive production of $\psi(2S)$ mesons in $pp$ collisions at $\sqrt{s}$ =7 TeV has been measured with the LHCb detector. The data sample corresponds to an integrated luminosity of 36 pb$^{-1}$ collected during 2010. The $\psi(2S)$ mesons are reconstructed in the decay channels $\psi(2S) \rightarrow \mu^{+} \mu^{-}$ and $\psi(2S)$ $\rightarrow$ $J$/$\psi \pi^{+}\pi^{-}$, with the $J$/$\psi$ meson decaying into two muons. Results are presented both for promptly produced $\psi(2S)$ mesons and for those originating from $b$-hadron decays. In the kinematic range $p_{\rm T}(\psi(2S))$ $\leq$ 16 GeV/$c$ and 2 < $y$($\psi(2S))$ $\leq$ 4.5 we measure \begin{eqnarray*} \sigma_{\rm prompt}(\psi(2S)) &=& 1.44 \pm 0.01~(\text{stat})\pm 0.12~(\text{syst})^{+0.20}_{-0.40}~(\text{pol})~{\rm \mu b}, \\ \sigma_{b}(\psi(2S)) &=& 0.25 \pm 0.01~(\text{stat}) \pm 0.02~(\text{syst})~{\rm \mu b}, \end{eqnarray*} where the last uncertainty on the prompt cross-section is due to the unknown $\psi(2S)$ polarization. Recent QCD calculations are found to be in good agreement with our measurements. Combining the present result with the LHCb $J$/$\psi$ measurements we determine the inclusive branching fraction \begin{equation*} \mathcal{B}(b \rightarrow \psi(2S) X) = (2.73 \pm 0.06~(\text{stat}) \pm 0.16~(\text{syst}) \pm 0.24~(\text{BF})) \times 10^{-3}, \end{equation*} where the last uncertainty is due to the $\mathcal{B}(b \rightarrow J/\psi X)$, $\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-)$ and $\mathcal{B}(\psi(2S) \rightarrow e^+ e^-)$ branching fraction uncertainties. All above results are corrected by an erratum included as an appendix.
Cross-section values for prompt $\psi(2S)$ and $\psi(2S)$ from $b$-hadrons in different $p_\perp$ bins and in the range $2.0 < y \leq 4.5$, evaluated as the weighted average of the $\mu^{+}\mu^{-}$ and $J/\psi \pi^{+}\pi^{-}$ channels. The first error is statistical, the second is systematic, and the last asymmetric uncertainty is due to the unknown polarization of the prompt $\psi(2S)$ meson.
We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30
The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity/ region < 1.0.
The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity| region 1.5-2.5.
The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.
B-jet cross section from the 'jet' analysis.
B-jet cross section from the 'muon' analysis.
B-jet cross section extrapolated from the 'muon' analysis.