Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).


Experimental Results on pi- p Interactions in the Center-Of-Mass-Energy Range 1.50-GeV-1.74-GeV

Dolbeau, J. ; Neveu, M. ; Triantis, F.A. ; et al.
Nucl.Phys.B 78 (1974) 233-250, 1974.
Inspire Record 89856 DOI 10.17182/hepdata.21889

Channel cross sections, elastic differential cross sections and single pion production mass spectra and angular distributions are presented for π − p interactions, based on 139 000 events observed at six energies in the center of mass region 1.50–1.74 GeV.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Pi- p forward elastic scattering near 1 gev/c

Abillon, J.M. ; Borg, A. ; Crozon, M. ; et al.
Nucl.Phys.B 46 (1972) 630-636, 1972.
Inspire Record 74955 DOI 10.17182/hepdata.8020

We have measured the differential cross section of the reaction π − p→ π − p in the range 0.92 ⩽ cos θ c.m. ⩽ 0.99 at 15 momenta between 0.875 and 1.580 GeV/ c . The results we report complete the available data; previous measurements of this reaction do not extend beyond cos θ c.m. =0.90. We compare our experimental results with dispersion relation predictions. A comparison of our results for B , the slope of the differential cross section, with earlier results shows many discrepancies.

17 data tables

No description provided.

No description provided.

No description provided.

More…