We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
In diffractive photoproduction ofηπ+π−, the two-body substatesηρ0 andA2π are found to contribute significantly to the cross-section forηπ+π− masses below 2.4 GeV. From a spin-parity analysis the branching ratio, ρ′(1600)→ηρ/ρ′(1600)→, is determined to be <0.02 at the 68.3% confidence level. TheA2π component shows an enhancement around 1.7 GeV. The spin-parity analysis indicates a probable contribution to this signal from exclusive photoproduction of theg(1690).
No description provided.
Not corrected for 35% background under the eta --> gamma gamma peak.
Not corrected for 35% background under the ETA --> GAMMA GAMMA peak.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
No description provided.
No description provided.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
No description provided.
No description provided.
We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) ine+e− annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations toOα(s2). Non-perturbative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (ɛ, δ) cuts, and found to be small. The extracted values of\(\Lambda _{\overline {MS} }\) lie between 100 and 300 MeV.
Corrected energy-energy correlation data.
CORRECTED FORWARD-BACKWARD ASYMMETRY.
We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.
CROSS SECTION MEASUREMENT RELATIVE TO PREDICTED QED CROSS SECTION.
FORWARD-BACKWARD ASYMMETRY. THE SYSTEMATIC ERROR IN THE ASYMMETRY IS <0.5 PCT.
ANGULAR DISTRIBUTIONS NOT GIVEN IN PAPER. SUPPLIED BY E.DEFFUR.
We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.
Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.
Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.
No description provided.
We have studied the production of prompt muons in hadronic events from e+e− annihilation at a center-of-mass energy of 29 GeV with the PEP4-TPC (Time Projection Chamber) detector. The muon p and pt distributions are well described by a combination of bottom- and charm-quark decays, with fitted semimuonic branching fractions of (15.2±1.9±1.2)% and (6.9±1.1±1.1)%, respectively. The muon spectra imply hard fragmentation functions for both b and c quarks, with 〈z(b quark)〉=0.80±0.05±0.05 and 〈z(c quark)〉=0.60±0.06±0.04. We derive neutral-current axial-vector couplings of a(b quark)=-0.9±1.1±0.3 and a(c quark)=1.5±1.5±0.5 from the forward-backward asymmetries.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT < 1 GeV/c.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT > 1 GeV/c.
The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.
Comparison of total tau pair cross section with O(alpha**3) QED prediction.
Corrected for acceptance backgraound, and O(alpha**3) radiative effects.
Forward-backward asymmetry based on fit to angular distributions.
The processγγπ+π− has been measured with complete particle identification. Cross-sections are presented from near threshold up to the region of thef(1270). In the mass range 0.5–0.7 GeV, crosssections are lower than the Born term predictions and show no evidence for an ε(600). The two-photon width of thef(1270) is found to be in agreement with previous results.
Data for W > 1 GeV read from graph.. Additional overall systematic error 10% for W < 1 GeV, rising to 20% for the 4 lowest W points.