A measurement of event-shape variables in proton$-$proton collisions at large momentum transfer is presented using data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb$^{-1}$. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed.
A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.
A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.
The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.
A measurement of the t t-bar production cross section in pp collisions at sqrt(s) = 7 TeV is presented. The results are based on data corresponding to an integrated luminosity of 2.3 inverse femtobarns collected by the CMS detector at the LHC. Selected events are required to have one isolated, high transverse momentum electron or muon, large missing transverse energy, and hadronic jets, at least one of which must be consistent with having originated from a b quark. The measured cross section is 158.1 +/- 2.1 (stat.) +/- 10.2 (syst.) +/- 3.5 (lum.) pb, in agreement with standard model predictions.
The angular distribution of the flavor-changing neutral current decay B$^+$$\to$ K$^+\mu^+\mu^-$ is studied in proton-proton collisions at a center-of-mass energy of 8 TeV. The analysis is based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$^{-1}$. The forward-backward asymmetry $A_{\mathrm{FB}}$ of the dimuon system and the contribution $F_{\mathrm{H}}$ from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.
A measurement of the W boson pair production cross section in proton-proton collisions at sqrt(s) = 8 TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4 inverse femtobarns. The W+W- candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured W+W- cross section is 60.1 +/- 0.9 (stat) +/- 3.2 (exp) +/- 3.1 (theo) +/- 1.6 (lum) pb = 60.1 +/- 4.8 pb, consistent with the standard model prediction. The W+W- cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -5.7 < c[WWW]/Lambda^2 < 5.9 TeV^{-2}, -11.4 < c[W]/Lambda^2 < 5.4 TeV^{-2}, -29.2 < c[B]/Lambda^2 < 23.9 TeV^{-2}, in the HISZ basis.
The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pT[B] and rapidity y[B] in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 49.4 inverse picobarns. The measurement uses the exclusive decay channel B+ to J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.
A search for the production of a heavy B quark, having electric charge -1/3 and vector couplings to W, Z, and H bosons, is carried out using proton-proton collision data recorded at the CERN LHC by the CMS experiment, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The B quark is assumed to be pair produced and to decay in one of three ways: to tW, bZ, or bH. The search is carried out in final states with one, two, and more than two charged leptons, as well as in fully hadronic final states. Each of the channels in the exclusive final-state topologies is designed to be sensitive to specific combinations of the B quark-antiquark pair decays. The observed event yields are found to be consistent with the standard model expectations in all the final states studied. A statistical combination of these results is performed and upper limits are set on the cross section of the strongly produced B quark-antiquark pairs as a function of the B quark mass. Lower limits on the B quark mass between 740 and 900 GeV are set at a 95% confidence level, depending on the values of the branching fractions of the B quark to tW, bZ, and bH. Overall, these limits are the most stringent to date.
A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.