Date

Measurement of the inclusive phi cross-section in pp collisions at sqrt(s) = 7 TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett.B 703 (2011) 267-273, 2011.
Inspire Record 919315 DOI 10.17182/hepdata.58143

The cross-section for inclusive phi meson production in pp collisions at a centre-of-mass energy of sqrt(s) = 7 TeV has been measured with the LHCb detector at the Large Hadron Collider. The differential cross-section is measured as a function of the phi transverse momentum p_T and rapidity y in the region 0.6 < p_T < 5.0 GeV/c and 2.44 < y < 4.06. The cross-section for inclusive phi production in this kinematic range is sigma(pp -> phi X) = 1758 pm 19(stat) ^{+43}_{-14}(syst) pm 182(scale) microbarn, where the first systematic uncertainty depends on the p_T and y region and the second is related to the overall scale. Predictions based on the Pythia 6.4 generator underestimate the cross-section.

8 data tables

Integrated PHI production cross section in the observed kinematic region.

Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.44-2.62 and 2.62-2.80.

Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.80-2.98 and 2.98-3.16.

More…

Version 2
Measurement of $V^0$ production ratios in $pp$ collisions at $\sqrt{s} = 0.9$ and 7\,TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 08 (2011) 034, 2011.
Inspire Record 917009 DOI 10.17182/hepdata.58685

The $\bar{\Lambda} / \Lambda$ and $\bar{\Lambda} / K^0_\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\,\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$\,TeV and $1.8\,\mathrm{nb}^{-1}$ at $\sqrt{s} = 7$\,TeV. Both ratios are presented as a function of transverse momentum, $p_\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\mathrm{T} < 2.50\,\mathrm{GeV}/c$} and {$2.0

16 data tables

$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.

$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.

$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 GeV ($0.25 < p_T < 2.50$ GeV$/c$) in $y$ intervals.

More…

Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072301, 2012.
Inspire Record 918779 DOI 10.17182/hepdata.95886

We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

14 data tables

$K^0_S$ invariant mass spectra from Cu+Cu $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.

$\Lambda$ and $\bar{\Lambda}$ invariant mass spectra from Cu+Cu $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The $\Lambda$ and $\bar{\Lambda}$ yields have not been feed down subtracted from weak decays. The uncertainties on the spectra points are statistical and systematic combined.

$\Xi$ and $\bar{\Xi}$ invariant mass spectra from Cu+Cu $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.

More…

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

5 data tables

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.

Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.

More…

Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 84 (2011) 052011, 2011.
Inspire Record 922830 DOI 10.17182/hepdata.58958

A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.

2 data tables

The measured prompt photon production spectra in the two |eta| regions, 0.0-0.9 and 0.9-1.44.

The measured prompt photon production spectra in the two |eta| regions, 1.57-2.1 and 2.1-2.5.


Measurement of the Drell-Yan Cross Section in pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 10 (2011) 007, 2011.
Inspire Record 921788 DOI 10.17182/hepdata.57980

The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.

3 data tables

The DY spectrum normalized to the Z0 region and to the mass bin widths.

The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.

The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.


Search for a new gauge boson in the $A'$ Experiment (APEX)

The APEX collaboration Abrahamyan, S. ; Ahmed, Z. ; Allada, K. ; et al.
Phys.Rev.Lett. 107 (2011) 191804, 2011.
Inspire Record 923960 DOI 10.17182/hepdata.102644

We present a search at Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling $\alpha'$ to electrons. Such a particle $A'$ can be produced in electron-nucleus fixed-target scattering and then decay to an $e^+e^-$ pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV, found no evidence for an $A'\to e^+e^-$ reaction, and set an upper limit of $\alpha'/\alpha \simeq 10^{-6}$. Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.

2 data tables

The binned invariant mass spectrum of e+e- pair events in the final event sample collected by APEX. The data correspond to Figure 3 of the paper, with the 0.05 MeV binning used for the profile likelihood analysis. The original plain-text file from <a href="https://doi.org/10.7484/inspirehep.data.lk95.m2gq">10.7484/inspirehep.data.lk95.m2gq</a> is accessible by clicking "Resources".

The unbinned invariant mass spectrum of e+e- pair events in the final event sample collected by APEX. The original data from <a href="https://doi.org/10.7484/inspirehep.data.ph21.l5rg">10.7484/inspirehep.data.ph21.l5rg</a> are accessible by clicking "Resources".


Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Lett.B 708 (2012) 249-264, 2012.
Inspire Record 927105 DOI 10.17182/hepdata.58523

Angular correlations between unidentified charged trigger ($t$) and associated ($a$) particles are measured by the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV for transverse momenta $0.25 < p_{T}^{t,\, a} < 15$ GeV/$c$, where $p_{T}^t > p_{T}^a$. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval $|\eta| < 1.0$. Distributions in relative azimuth $\Delta\phi \equiv \phi^t - \phi^a$ are analyzed for $|\Delta\eta| \equiv |\eta^t - \eta^a| > 0.8$, and are referred to as "long-range correlations". Fourier components $V_{n\Delta} \equiv \langle \cos(n\Delta\phi)\rangle$ are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy $V_{n\Delta}(p_{T}^t, p_{T}^a)$ is fully described in terms of single-particle anisotropies $v_n (p_{T})$ as $V_{n\Delta}(p_{T}^t, p_{T}^a) = v_n(p_{T}^t) \, v_n(p_{T}^a)$. This expectation is tested for $1 \leq n \leq 5$ by applying a global fit of all $V_{n\Delta} (p_{T}^t, p_{T}^a)$ to obtain the best values $v_{n}\{GF\} (p_{T})$. It is found that for $2 \leq n \leq 5$, the fit agrees well with data up to $p_T^a \sim 3$-4 GeV/$c$, with a trend of increasing deviation as $p_{T}^t$ and $p_{T}^a$ are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full $0.25 < p_{T} < 15$ GeV/$c$ range using a single $v_n(p_T)$ curve; such a description is however approximately possible for $2 \leq n \leq 5$ when $p_T^a < 4$ GeV/$c$. For the $n=1$ harmonic, however, a single $v_1(p_T$ curve is not obtained even within the reduced range $p_T^a < 4$ GeV/$c$.

100 data tables

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for two centrality classes 0-2% and 2-10%. Note that in the paper the data are plotted multiplied by 100.

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for three centrality classes 10-20%, 20-30% and 40-50%. Note that in the paper the data are plotted multiplied by 100.

Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 8-15 GeV and associated particles in the range 6-8 GeV for two centrality classes 40-50% and 0-20%. Note that in the paper the data are plotted multiplied by 100.

More…

Observation of $J/\psi$ pair production in pp collisions at $\sqrt{s}=7 TeV$

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett.B 707 (2012) 52-59, 2012.
Inspire Record 926280 DOI 10.17182/hepdata.58915

The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.

2 data tables

Total production cross section for J/PSI pairs.

Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.


Directed and elliptic flow of charged particles in Cu+Cu collisions at $\sqrt{\bm {s_{NN}}} =$ 22.4 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014901, 2012.
Inspire Record 929522 DOI 10.17182/hepdata.98622

This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $\eta/y_{\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(\eta), v_2(p_T)$ and $v_2(\eta)$.

6 data tables

The event plane resolution measured using the TPC (second order) and using the BBC (first order) are shown as a function of collision centrality for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. Errors are statistical only.

Charged hadron $v_{1}${BBC} vs. $\eta$ for 0-60% centrality Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. The errors shown are statistical. Systematic errors are discussed in Section III.C. Results are compared to $v_{1}$ from 0-40% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV from the PHOBOS collaboration [10].

Comparison of the measured $v_{1}${BBC} as a function of η in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV with model predictions. The inset shows the central $\eta$ region in more detail. The errors are statistical only.

More…