Date

Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2015) 053, 2015.
Inspire Record 1320561 DOI 10.17182/hepdata.66567

A measurement of the W boson helicity is presented, where the W boson originates from the decay of a top quark produced in pp collisions. The event selection, optimized for reconstructing a single top quark in the final state, requires exactly one isolated lepton (muon or electron) and exactly two jets, one of which is likely to originate from the hadronization of a bottom quark. The analysis is performed using data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the CERN LHC in 2012. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns. The measured helicity fractions are F[L] = 0.298 +/- 0.028 (stat) +\- 0.032 (syst), F[0] = 0.720 +/- 0.039 (stat) +/- 0.037 (syst), and F[R] = -0.018 +/- 0.019 (stat) +/- 0.011 (syst). These results are used to set limits on the real part of the tWb anomalous couplings, gL and gR.

3 data tables

Measurement of the W helicity fractions using the cos(theta*l) distribution in the muon channel. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the fit while FR is obtained from the constraint of FL+FR+F0 = 1. The statistical correlation between the fit parameters is about -0.90.

Measurement of the W helicity fractions using the cos(theta*l) distribution in the electron channel. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the fit while FR is obtained from the constraint of FL+FR+F0 = 1. The statistical correlation between the fit parameters is about -0.90.

Measurement of the W helicity fractions using the cos(theta*l) distribution in both electron and muon channels. The helicity fractions corresponding to the longitudinal (F0) and left-handed (FL) polarizations are extracted from the combined fit while FR is obtained from the constraint of FL+FR+F0 = 1. The total correlation between the fit parameters is about -0.80.


Measurement of prompt psi(2S) to J/psi yield ratios in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 113 (2014) 262301, 2014.
Inspire Record 1320775 DOI 10.17182/hepdata.66548

The ratio between the prompt psi(2S) and J/psi yields, reconstructed via their decays into muon pairs, is measured in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC, corresponding to integrated luminosities of 150 inverse microbarns and 5.4 inverse picobarns, respectively. The double ratio of measured yields, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/ N[J/psi])[pp], is computed in three PbPb collision centrality bins and two kinematic ranges: one at midrapidity, abs(y) < 1.6, covering the transverse momentum range 6.5 < pt < 30 GeV/c, and the other at forward rapidity, 1.6 < abs(y) < 2.4, extending to lower pt values, 3 < pt < 30 GeV/c. The centrality-integrated double ratio changes from 0.45 +/- 0.13 (stat) +/- 0.07 (syst) in the first range to 1.67 +/- 0.34 (stat) +/- 0.27 (syst) in the second. This difference is most pronounced in the most central collisions.

4 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the forward rapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, integrated over centrality, for the midrapidity and forward rapidity analysis bins.

More…

Di-Hadron Correlations with Identified Leading Hadrons in 200 GeV Au+Au and d+Au Collisions at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 751 (2015) 233-240, 2015.
Inspire Record 1322126 DOI 10.17182/hepdata.73458

The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

14 data tables

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from 0-10% most-central Au+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for non-pion triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

More…

Study of Z production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 03 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612

The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

15 data tables

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.

The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.

More…

Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Measurement of the ratio B(Bc+/- to J/psi pi+/- pi+/- pi-/+)/B(Bc+/- to J/psi pi+/-) and the production cross sections times branching fractions of Bc+/- to J/psi pi+/- and B+/- to J/psi K+/- in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2015) 063, 2015.
Inspire Record 1323075 DOI 10.17182/hepdata.39386

The ratio of the production cross sections times branching fractions (sigma(Bc+) B(Bc+ to J/psi pi+))/ (sigma(B+) B(B+ to J/psi K+)) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Bc+/- and B+/- mesons with transverse momentum pt > 15 GeV and rapidity abs(y) < 1.6. The data sample corresponds to an integrated luminosity of 5.1 inverse femtobarns. The ratio is determined to be [0.48 +/- 0.05 (stat) +/- 0.03 (syst) +/- 0.05 (tau_{Bc})]% The J/psi pi+/- pi+/- pi-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(Bc+/- to J/psi pi+/- pi+/- pi-/+) / B(Bc+/- to J/psi pi+/-) is measured to be 2.55 +/- 0.80 (stat) +/- 0.33 (syst) +0.04/-0.01 (tau[Bc+]), consistent with the previous LHCb result.

2 data tables

The ratio of the production cross sections times branching fractions of $B_c^\pm\to J/\psi\pi^\pm$ and $B^\pm\to J/\psi K^\pm$ is measured in the kinematic region $p_T$> 15 GeV and |y| < 1.6. Beside the statistical and systematic errors, an uncertainty associated to the $B_c^{\pm}$ lifetime is quoted as a separate third error. The $B_c^\pm\to J/\psi\pi^\pm$ reconstruction efficiency has a dependence on the $B_c^\pm$ lifetime. Recently LHCb published a more precise $B_c^\pm$ lifetime measurement, which is significantly higher than the previous world average (PDG 2012). To determine the systematic uncertainty associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.

To determine the systematic uncertainty in the ratio of branching fractions associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.


Measurement of $e^+e^- \to \pi^+\pi^-\psi(2S)$ via Initial State Radiation at Belle

The Belle collaboration Wang, X.L. ; Yuan, C.Z. ; Shen, C.P. ; et al.
Phys.Rev.D 91 (2015) 112007, 2015.
Inspire Record 1324785 DOI 10.17182/hepdata.71501

We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.

1 data table

Measured $e^+e^- \to \pi^+\pi^-\psi(2S)$ cross section for center of mass energy ($E_{\rm cm}$) from 4.0 GeV/$c^2$ to 5.5 GeV/$c^2$. The errors are the sums of statistical errors of signal and background events and the systematic errors.


Measurement of the $\phi^*_\eta$ distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb$^{-1}$ of $p\bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 072002, 2015.
Inspire Record 1324946 DOI 10.17182/hepdata.72484

We present a measurement of the distribution of the variable $\phi^*_\eta$ for muon pairs with masses between 30 and 500 GeV, using the complete Run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb$^{-1}$ at $\sqrt{s}$ = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable $\phi^*_\eta$ probes the same physical effects as the $Z/\gamma^*$ boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the $\phi^*_\eta$ distributions for dilepton masses away from the $Z\rightarrow \ell^+\ell^-$ boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.

6 data tables

Table of results for the dimuon channel for $|y|<1$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

Table of results for the dimuon channel for $1<|y|<2$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

Table of results for the dimuon channel for $|y|<1$ region $30 < M_{\ell\ell} < 60$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.

More…

Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 746 (2015) 79-99, 2015.
Inspire Record 1327224 DOI 10.17182/hepdata.68776

A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at sqrt(s) = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions.

5 data tables

Measured dijet angular distributions in bin of dijet invariant mass. P=3 and P=4 refers to the two jets in the final state.

Measured dijet angular distributions in bin of dijet invariant mass.P=3 and P=4 refers to the two jets in the final state.

Measured dijet angular distributions in bin of dijet invariant mass. P=3 and P=4 refers to the two jets in the final state.

More…

Measurement of $B_c^+$ production in proton-proton collisions at $\sqrt{s}=8$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.Lett. 114 (2015) 132001, 2015.
Inspire Record 1327230 DOI 10.17182/hepdata.22229

Production of $B_c^+$ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of $2.0~{\rm fb}^{-1}$ recorded by the LHCb experiment. The ratio of production cross-sections times branching fractions between the $B_c^+\to J/\psi \pi^+$ and $B^+\to J/\psi K^+$ decays is measured as a function of transverse momentum and rapidity in the regions $0 < p_{\rm T} < 20~{\rm GeV}/c$ and $2.0 < y < 4.5$. The ratio in this kinematic range is measured to be $(0.683\pm0.018\pm0.009)\%$, where the first uncertainty is statistical and the second systematic.

3 data tables

Double differential production ratio $R(p_T, y)$ in bins of $p_T$ and $y$.

Differential production ratio $R(p_T)$ in bins of $p_T$ and integrated over $2.0 < y <4.5$ range.

Differential production ratio $R(y)$ in bins of $y$ and integrated over $0 < p_T < 20$ $GeV/c$ range.