Date

Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

2 data tables match query

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.


Measurement of the forward-backward asymmetries in the production of $\Xi$ and $\Omega$ baryons in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 112001, 2016.
Inspire Record 1457606 DOI 10.17182/hepdata.78545

We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.

1 data table match query

Forward-backward asymmetry $A_{\rm FB}$ of $\Xi^\mp$ baryons with $p_T > 2$ GeV in minimum bias events, $p\bar{p} \rightarrow \Xi^\mp X$, and muon events $p \bar{p} \rightarrow \mu \Xi^\mp X$, and $A_{\rm FB}$ of $\Omega^-$ and $\Omega^+$ baryons with $p_T > 2$ GeV in muon events $p \bar{p} \rightarrow \mu \Omega^\mp X$. The first uncertainty is statistical, the second is systematic due to the detector asymmetry $A'_{\rm NS} A'_\Xi$.


Measurement of the Muon Charge Asymmetry in Inclusive $pp \to W+X$ Production at $\sqrt s =$ 7 TeV and an Improved Determination of Light Parton Distribution Functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables match query

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…

Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

3 data tables match query

Forward-backward asymmetry corrected for kinematic cuts. Errors have systematics folded.

Forward-backward asymmetry. Statistical errors only.

Forward-backward asymmetry. Statistical errors only.


Asymmetry in the Angular Distribution of Inclusive $\Lambda$ Baryons From $e^+ e^-$ Annihilations at $\sqrt{s}=29$-{GeV}

Abachi, S. ; Baringer, Philip S. ; Bylsma, B.G. ; et al.
Phys.Lett.B 181 (1986) 403-406, 1986.
Inspire Record 18955 DOI 10.17182/hepdata.30215

A forward-backward asymmetry A , consistent with that expected from the γ − Z 0 interference term in the process e + e − → q q , is observed in the laboratory production angular distribution of high-momentum ∧ baryons. The data were collected with the High Resolution Spectrometer at PEP. The asymmetry for ∧ baryons with fractional energy z= 2E s greater than 0.3 is A = (−23± 8 plusmn ; 2)%.

2 data tables match query

No description provided.

Data read from graph.


Peripheral Dipion Production by Pions of 12 and 18 GeV/c

Jones, Lawrence W. ; Bleuler, E. ; Caldwell, D.O. ; et al.
Phys.Rev. 166 (1968) 1405-1430, 1968.
Inspire Record 944942 DOI 10.17182/hepdata.26526

A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.

3 data tables match query

Forward-backward asymmetry for the dipion production under RHO resonance. Asymmetry defined as P = (F-B)/(F+B), where F corresponds to dipion eventswith THETA > 90 deg, B corresponds to dipion events with THETA < 90 deg, and TH ETA is the polar angle between the incident and the scattered negative pion in the dipion center-of-mass system.

Forward-backward asymmetry for the dipion production under RHO resonance. Asymmetry defined as P = (F-B)/(F+B), where F corresponds to dipion eventswith THETA > 90 deg, B corresponds to dipion events with THETA < 90 deg, and TH ETA is the polar angle between the incident and the scattered negative pion in the dipion center-of-mass system.

Forward-backward asymmetry for the dipion production under RHO resonance. Asymmetry defined as P = (F-B)/(F+B), where F corresponds to dipion eventswith THETA > 90 deg, B corresponds to dipion events with THETA < 90 deg, and TH ETA is the polar angle between the incident and the scattered negative pion in the dipion center-of-mass system. 12 and 18 GeV averaged.


Measurement of the $dp \rightarrow {^3He}}\eta$ reaction near threshold\author{J. Smyrski\corauthref{corr}

Smyrski, J. ; Adam, H.-H. ; Budzanowski, A. ; et al.
Phys.Lett.B 649 (2007) 258-262, 2007.
Inspire Record 745085 DOI 10.17182/hepdata.31470

Total and differential cross sections for the dp --> 3He eta reaction have been measured near threshold for 3He center-of-mass momenta in the range from 17.1 MeV/c to 87.5 MeV/c. The data were taken during a slow ramping of the COSY internal deuteron beam scattered on a proton target detecting the 3He ejectiles with the COSY-11 facility. The forward-backward asymmetries of the differential cross sections deviate clearly from zero for center-of-mass momenta above 50 MeV/c indicating the presence of higher partial waves in the final state. Below 50 MeV/c center-of-mass momenta a fit of the final state enhancement factor to the data of the total cross sections results in the 3He eta scattering length of a = |2.9 +/- 0.6| + i (3.2 +/- 0.4) fm.

1 data table match query

Forward-Backward asymmetry for the reaction DEUT P --> HE3 ETA.


Measurement of the e+ e- --> b anti-b and e+ e- --> c anti-c forward backward asymmetries at the Z0 resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 292 (1992) 454-462, 1992.
Inspire Record 339089 DOI 10.17182/hepdata.29017

We have measured the forward-backward asymmetry in e + e − → b b and e + e − → c c processes using hadronic events containing muons or electrons. The data sample corresponds to 4100000 hadronic decays of the Z 0 . From a fit to the single lepton and dilepton p and p T spectra, we determine A b b =0.086±0.015±0.007 and A c c =0.083±0.038±0.027 at the effective center-of-mass energy √ s =91.24 GeV. These measurements yield a value of the electroweak mixing angle sin 2 θ w =0.2336±0.0029 .

3 data tables match query

No description provided.

No description provided.

No description provided.


Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.