A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values from the histogram-based analysis (Phys. Lett. B 846 (2023) 138223) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data when combining the $H^*\rightarrow ZZ\rightarrow 4\ell$ and $H^*\rightarrow ZZ\rightarrow 2\ell 2\nu$ decay channels. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
This paper presents a new $\tau$-lepton reconstruction and identification procedure at the ATLAS detector at the Large Hadron Collider, which leads to significantly improved performance in the case of physics processes where a highly boosted pair of $\tau$-leptons is produced and one $\tau$-lepton decays into a muon and two neutrinos ($\tau_{\mu}$), and the other decays into hadrons and one neutrino ($\tau_{had}$). By removing the muon information from the signals used for reconstruction and identification of the $\tau_{had}$ candidate in the boosted pair, the efficiency is raised to the level expected for an isolated $\tau_{had}$. The new procedure is validated by selecting a sample of highly boosted $Z\rightarrow\tau_{\mu}\tau_{had}$ candidates from the data sample of $140$${fb}^{-1}$ of proton-proton collisions at $13$ TeV recorded with the ATLAS detector. Good agreement is found between data and simulation predictions in both the $Z\rightarrow\tau_{\mu}\tau_{had}$ signal region and in a background validation region. The results presented in this paper demonstrate the effectiveness of the $\tau_{had}$ reconstruction with muon removal in enhancing the signal sensitivity of the boosted $\tau_{\mu}\tau_{had}$ channel at the ATLAS detector.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the SR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the VR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the $p_\mathrm{T}{}_{\mu\mathrm{-had}}^\mathrm{col}$ in the SR. `$Z(\rightarrow\tau\tau)+\text{jets}$' represents the contributions from the signal process. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.