Showing 10 of 873 results
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 < $|y^{t\bar{t}}|$ < 1.1 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 < $|y^{t\bar{t}}|$ < 1.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 < $|y^{t\bar{t}}|$ < 1.1 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 < $|y^{t\bar{t}}|$ < 1.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t,2}$ absolute differential cross-section at particle level.
$|{y}^{t,2}|$ absolute differential cross-section at particle level.
$m^{t\bar{t}}$ absolute differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level.
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|\cos\theta^{*}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t}$ absolute differential cross-section at parton level.
$|y^{t}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t,2}$ absolute differential cross-section at parton level.
$|{y}^{t,2}|$ absolute differential cross-section at parton level.
$m^{t\bar{t}}$ absolute differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|\cos\theta^{*}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
Dijet mass spectra after the background only fit with the background prediction in the high-mass region with two b-tags.
Dijet mass spectra after the background only fit with the background prediction in the low-mass region with two b-tags.
The online b-tagging efficiency with respect to the offline b-tagging efficiency as a function of pT. The b-tagging online and offline working points correspond to an efficiency of 60% and 70%, respectively.
Observed and expected 95% credibility-level upper limits on the cross-section for the b* model in the high-mass region with inclusive b-jet selection.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the SSM and leptophobic Z' models in the low- and high-mass region with two b-tags selection.
Observed and expected 95% credibility-level upper limits on the cross-section for DM Z' models in the low-mass region with two b-tags selection. The Z' is expected to decay to all five quark flavors other than the top quark and the mediator to SM quark coupling (gSM) equal to 0.1 is assumed.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for DM Z'->bb models in the high-mass region with two b-tags selection. The Z' is expected to decay to bb only and the mediator to SM quark coupling (gSM) equal to 0.25 is assumed.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the high-mass inclusive one b-tag selection.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the combined low- and high-mass two b-tags selection.
The mass distributions for the inclusive one b-tagged selection and two b-tagged selection using an integrated luminosity of 36.1 $fb^{-1}$. The inclusive one b-tagged Pythia8 MC distribution is normalized to the inclusive one b-tagged data. The two b-tagged Pythia8 MC distribution is normalized to the two b-tagged data. The systematic uncertainty band is dominated by the b-tagging scale factor and the b-jet energy scale.
Signal acceptance times efficiency for inclusive 1 b-tag and 2 b-tag categories as a function of the simulated b* and the Z' masses.
Signal acceptance times efficiency for 2 b-tag categories as a function of the simulated Z' masses.
The flavor composition of the simulated dijet background as a function of dijet mass before tagging. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with inclusive one b-tag. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with two b-tags. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0$^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for Higgs boson transverse momentum ptH. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the Higgs boson rapidity |yH|. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the number of jets Njets with pT > 30 GeV. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Differential cross sections in the full phase space obtained from the H->gammagamma and H->4l combined measurement for the transverse momentum of the leading jet pTj1. The first bin in the pTj1 distribution corresponds to the 0-jet bin in the Njets distribution. The NNLOPS ggF prediction scaled to the N3LO cross section is also provided.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of Higgs transverse momentum, in the 4l channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of Higgs transverse momentum, in the gamma gamma channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of Higgs rapidity, in the 4l channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of Higgs rapidity, in the gamma gamma channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of number of jets, in the 4l channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of number of jets, in the gamma gamma channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of the transverse momentum of the leading jet, in the 4l channel.
Acceptance factors to extrapolate from the fiducial phase space to the total phase space, in bins of the transverse momentum of the leading jet, in the gamma gamma channel.
Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with $H^{\pm}$ decays hadronically or leptonically, the search targets $\tau$+jets and $\tau$+lepton final states, in both cases with a hadronically decaying $\tau$-lepton. No evidence of a charged Higgs boson is found. For the mass range of $m_{H^{\pm}}$ = 90-2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.2-0.0025 pb. In the mass range 90-160 GeV, assuming the Standard Model cross-section for $t\overline{t}$ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction $\mathrm{B}(t\to bH^{\pm}) \times \mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
Observed and expected 95% CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed and expected 95% CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times\mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the hMSSM, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
Expected 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the hMSSM, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
Observed a95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the $m_{H}^{mod-}$ scenario, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
Expected 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the $m_{H}^{mod-}$ scenario, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
A search for resonant and non-resonant pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data with $\sqrt{s}= 13$ TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. The semileptonic and fully hadronic decays of the $\tau$-lepton pair are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for non-resonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the Standard Model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances $X$ in the mass range $305~{\rm GeV} < m_X < 402~{\rm GeV}$ in the simplified hMSSM minimal supersymmetric model for $\tan\beta=2$ and excluding bulk Randall-Sundrum gravitons $G_{\mathrm{KK}}$ in the mass range $325~{\rm GeV} < m_{G_{\mathrm{KK}}} < 885~{\rm GeV}$ for $k/\overline{M}_{\mathrm{Pl}} = 1$.
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 1 process
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 2 process
Observed and expected limits at 95% CL on the cross-sections of hMSSM scalar X to HH process
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the RS bulk model with k/MPl = 1
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the RS bulk model with k/MPl = 2
Acceptance x efficiency versus resonance mass for both lephad and hadhad channels in the scalar model
Upper limits on the production cross-section times the HH to bbtautau branching ratio for non-resonant HH at 95% CLS and their interpretation as multiples of the SM prediction
Upper limits on the production cross-section times the HH to bbtautau branching ratio divided by the SM prediction for non-resonant HH at 95% CL
Post-fit expected number of signal and background events and observed number of data events after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis
Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis
A search for heavy right-handed Majorana or Dirac neutrinos $N_R$ and heavy right-handed gauge bosons $W_R$ is performed in events with a pair of energetic electrons or muons, with the same or opposite electric charge, and two energetic jets. The events are selected from $pp$ collision data with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model are observed. The results are interpreted within the theoretical framework of a left-right symmetric model and lower limits are set on masses in the heavy right-handed $W$ boson and neutrino mass plane. The excluded region extends to $m_{W_R}=4.7$ TeV for both Majorana and Dirac $N_R$ neutrinos.
Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.
Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.
Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Majorana $N_R$ neutrino $ee$ channel.
Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $\mu\mu$ channel.
Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $\mu\mu$ channel.
Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Majorana $N_R$ neutrino $\mu\mu$ channel.
Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $ee$ channel.
Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $ee$ channel.
Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Dirac $N_R$ neutrino $ee$ channel.
Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $\mu\mu$ channel.
Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $\mu\mu$ channel.
Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Dirac $N_R$ neutrino $\mu\mu$ channel.
Observed 95% CL upper limit on cross-section times branching ratio to the $ee$ final state for the Keung-Senjanovic process in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.
Observed 95% CL upper limit on cross-section times branching ratio to the $\mu\mu$ final state for the Keung-Senjanovic process in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $\mu\mu$ channel.
Observed 95% CL upper limit on cross-section times branching ratio to the $\mu\mu$ final state for the Keung-Senjanovic process in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $ee$ channel.
Observed 95% CL upper limit on cross-section times branching ratio to the $\mu\mu$ final state for the Keung-Senjanovic process in the $m_{W_R}–m_{N_R}$ plane for the Dirac $N_R$ neutrino $\mu\mu$ channel.
Efficiencies times acceptance for signal region selection as a function of the signal $W_R$ and $N_R$ masses for the SS $e^{\pm}e^{\pm}$ channel.
Efficiencies times acceptance for signal region selection as a function of the signal $W_R$ and $N_R$ masses for the SS $\mu^{\pm}\mu^{\pm}$ channel.
Efficiencies times acceptance for signal region selection as a function of the signal $W_R$ and $N_R$ masses for the OS $e^{\pm}e^{\mp}$ channel.
Efficiencies times acceptance for signal region selection as a function of the signal $W_R$ and $N_R$ masses for the OS $\mu^{\pm}\mu^{\mp}$ channel.
A search for new charged massive gauge bosons, $W^\prime$, is performed with the ATLAS detector at the LHC. Data were collected in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV and correspond to an integrated luminosity of 36.1 $\textrm{fb}^{-1}$. This analysis searches for $W^\prime$ bosons in the $W^\prime \rightarrow t\bar{b}$ decay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0 TeV and considers right-handed $W^\prime$ bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the $W^\prime \rightarrow t\bar{b}$ cross section times branching ratio and the $W^\prime$ boson effective couplings as a function of the $W^\prime$ boson mass. For right-handed $W^\prime$ bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for $W^\prime \rightarrow t\bar{b}$ in the fully hadronic final state. Using the combined searches, right-handed $W^\prime$ bosons with masses below 3.25 TeV are excluded at the 95% confidence level.
Signal selection efficiency (efficiency is defined as the number of events passing all selections divided by the total number of simulated $W' \to t\bar{b} \to \ell \nu b \bar{b}$ events) in the signal region as a function of the simulated $W^\prime_{\textrm{R}}$ mass.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ electron validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ muon validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 4-jet 2-tag VR$_{t\bar{t}}$ electron validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.
Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 4-jet 2-tag VR$_{t\bar{t}}$ muon validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 2-jet 1-tag signal region, for electron channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 2-jet 1-tag signal region, for muon channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 2-jet 2-tag signal region, for electron channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 2-jet 2-tag signal region, for muon channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 3-jet 1-tag signal region, for electron channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 3-jet 1-tag signal region, for muon channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 3-jet 2-tag signal region, for electron channel. Uncertainties include all the systematic and statistical uncertainties.
Post-fit distribution of the reconstructed mass of the $W^\prime_{\textrm{R}}$ boson candidate in the 3-jet 2-tag signal region, for muon channel. Uncertainties include all the systematic and statistical uncertainties.
Upper limits at the 95% CL on the $W^\prime_{\textrm{R}}$ production cross section times branching fraction as a function of resonance mass, assuming $g^\prime/g=1$.
Observed and expected 95% CL limit on the ratio $g^\prime/g$, as a function of resonance mass, for right-handed $W^\prime$ coupling. The impact of the increased $W^\prime_{\textrm{R}}$ width for coupling values of $g'/g>1$ on the acceptance and on kinematical distributions is taken into account.
Observed and expected 95% CL upper limit on the $W^\prime_{\textrm{R}}$ production cross section times branching fraction as a function of resonance mass for the combination of semileptonic and hadronic [Phys. Lett. B 781 (2018) 327] $W^\prime \rightarrow t\bar{b}$ searches, assuming $g^\prime/g=1$. The hadronic search covers a mass range between 1.0 and 5.0TeV.
A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction. The search uses data collected in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$ = 13 TeV proton--proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass-splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass-splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass-splittings, and the largest local excess amounts to 3.0 standard deviations.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $H_{4,1}^{\textrm{PP}}$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{1,1},H^{\textrm{P}_{\textrm{b}}}_{1,1})/\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{2,1},H^{\textrm{P}_{\textrm{b}}}_{2,1})$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $p_{\mathrm{T\ ISR}}^{~\textrm{CM}}$ in SR2$\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $R_{\textrm{ISR}}$ in SR$2\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $H_{3,1}^{\textrm{PP}}$ in SR$3\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $p_{\textrm{T}}^{\ell_{1}}$ in SR$3\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $p_{\mathrm{T\ ISR}}^{~\textrm{CM}}$ in SR$3\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $3\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution of $R_{\textrm{ISR}}$ in SR$3\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100\% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the the $3\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the the $3\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Expected exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of the $2\ell$ and 3$\ell$ search channels, assuming 100\% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Observed exclusion limits at 95% CL on the masses of C1/N2 and N1 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of the $2\ell$ and 3$\ell$ search channels, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and LSP.
Signal region acceptance for chargino-neutralino production in SR2L_High. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_High.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_High.
Signal region acceptance for chargino-neutralino production in SR2L_Int. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_Int.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_Int.
Signal region acceptance for chargino-neutralino production in SR2L_Low. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_Low.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_Low.
Signal region acceptance for chargino-neutralino production in SR2L_ISR. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR2L_ISR.
Signal region acceptanceXefficiency for chargino-neutralino production in SR2L_ISR.
Signal region acceptance for chargino-neutralino production in SR3L_High. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_High.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_High.
Signal region acceptance for chargino-neutralino production in SR3L_Int. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_Int.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_Int.
Signal region acceptance for chargino-neutralino production in SR3L_Low. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_Low.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_Low.
Signal region acceptance for chargino-neutralino production in SR3L_ISR. The acceptance is with respect to all possible $W/Z$ decays.
Signal region efficiency for chargino-neutralino production in SR3L_ISR.
Signal region acceptanceXefficiency for chargino-neutralino production in SR3L_ISR.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 2$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the 3$\ell$ search, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Observed 95% CL upper limit on the production cross-section of C1/N2 from the analysis of 36.1fb$^{-1}$ of 13 TeV $pp$ collision data obtained from the statistical combination of 2 and 3$\ell$ searches, assuming 100% branching ratio of the sparticles to decay to SM $W/Z$ bosons and N1.
Signal cutflow for SR2L_High and m[C1/N2,N1] = [500,0] GeV. 5000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_Int and m[C1/N2,N1] = [400,200] GeV. 10000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_Low and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR2L_ISR and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_High and m[C1/N2,N1] = [500,0] GeV. 5000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_Int and m[C1/N2,N1] = [400,200] GeV. 10000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_Low and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
Signal cutflow for SR3L_ISR and m[C1/N2,N1] = [200,100] GeV. 20000 events were generated for this point. The unweighted number of events correspond to the number of selected MC events in the produced sample, while the weighted yield is normalized to the luminosity of the data.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.