A New measurement of the spin dependent structure function g1(x) of the deuteron

The Spin Muon collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 357 (1995) 248-254, 1995.
Inspire Record 397392 DOI 10.17182/hepdata.47847

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q 2 < 60 GeV 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

4 data tables

Results on the virtual photon deuteron asymmetry.

Results on the spin structure function of the deuteron.

Results on the spin structure function of the neutron.

More…

Spin asymmetry in muon - proton deep inelastic scattering on a transversely polarized target

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 336 (1994) 125-130, 1994.
Inspire Record 375478 DOI 10.17182/hepdata.48344

We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.

2 data tables

No description provided.

Nucleon spin structure function g2.


Measurement of the spin dependent structure function g1(x) of the proton.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 329 (1994) 399-406, 1994.
Inspire Record 373036 DOI 10.17182/hepdata.48171

: We have measured the spin-dependent structure function $g_1~p$ of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003<x<0.7$ and $1\,\mbox{GeV}~2<Q~2<60\,\mbox{GeV}~2$. Its first moment, $\int_0~1 g_1~p(x) dx $, is found to be $0.136 \pm 0.011\,(\mbox{stat.})\pm 0.011\,(\mbox{syst.})$ at $Q~2=10\,\mbox{GeV}~2$. This value is smaller than the prediction of the Ellis--Jaffe sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available proton, deuteron and neutron data confirms the Bjorken sum rule to within $10\%$ of the theoretical value.

3 data tables

Results on the virtual photon proton asymmetry.

Results on the spin structure function of the proton.

Data for g1 at fixed Q**2 = 10 GeV (assuming no Q**2 dependence of A1).


Measurement of the spin dependent structure function g1(x) of the deuteron.

The Spin Muon collaboration Adeva, B. ; Ahmad, S. ; Arvidson, A. ; et al.
Phys.Lett.B 302 (1993) 533-539, 1993.
Inspire Record 354911 DOI 10.17182/hepdata.28926

We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.

2 data tables

Virtual photon asymmetry A1.

Spin-dependent structure function G1.


Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…

Determination of alpha-s from jet multiplicities measured on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 248 (1990) 464-472, 1990.
Inspire Record 298078 DOI 10.17182/hepdata.29651

We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.

2 data tables

Errors are combined statistical and systematic uncertainties.

No description provided.


Experimental Study of Inclusive Muon Spectra at PETRA

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 51 (1983) 443, 1983.
Inspire Record 13422 DOI 10.17182/hepdata.20492

The results of a high-statistics study of inclusive muon spectra at PETRA are reported. Improved mass limits have been obtained for heavy quarks, heavy leptons, and charged Higgs particles. It is shown that the fragmentation properties of b quarks and c quarks are different, with the mean fragmentation variables 〈zb〉=0.75±0.03±0.06, 〈zc〉=0.46±0.02±0.05 and the average semileptonic branching ratio for the B and C hadrons R(B)=(10.5±1.5±1.3)%, R(C)=(11.5±1.0±1.7)%.

5 data tables

No description provided.

No description provided.

No description provided.

More…