Photoproduction of the $f_1(1285)$ Meson

The CLAS collaboration Dickson, R. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 93 (2016) 065202, 2016.
Inspire Record 1452551 DOI 10.17182/hepdata.72793

The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.

0 data tables match query

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

1 data table match query

F2 measurements for a Q**2 of 1.450 GeV**2.


Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

1 data table match query

Differential cross section for the W range 1.89 to 1.90 GeV.