A measurement is presented for the electroweak production of a W boson, a photon ($\gamma$), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross section for the electroweak W$\gamma$jj production is 23.5 $^{+4.9}_{-4.7}$ fb, whereas the total cross section for W$\gamma$jj production is 113 $\pm$ 13 fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters $f_\mathrm{M,2-5}$$/$$\Lambda^4$ and $f_\mathrm{T,6-7}$$/$$\Lambda^4$.
A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of $140~\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3~(\text{stat.})\pm1.4~(\text{syst.})~\pm 0.3~(\text{scale})~\pm 0.2~(\text{PDF}\oplusα_\text{S})~\text{GeV},$ which is in good agreement with other top-quark mass results.
A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.
This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.
The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.
A search for nonresonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}={13}$ TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross-section at 95% confidence level. Constraints are placed on modifiers to the $HHH$ and $HHVV$ couplings. The observed (expected) $2\sigma$ constraints on the $HHH$ coupling modifier, $\kappa_\lambda$, are determined to be $[-3.5, 11.3]$ ($[-5.4, 11.4]$), while the corresponding constraints for the $HHVV$ coupling modifier, $\kappa_{2V}$, are $[-0.0, 2.1]$ ($[-0.1, 2.1]$). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the $HH$ production cross-section are placed in seven Higgs effective field theory benchmark scenarios.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_{_\text{NN}}}$ = 8.16 TeV in 2016. The event centrality, which reflects the $p$+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, $R_\mathrm{CP}$, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The $R_\mathrm{CP}$ shows a scaling with the Bjorken-$x$ of the parton originating from the proton, $x_p$, while no such trend is observed as a function of $x_\mathrm{Pb}$. This analysis provides unique input to understanding the role of small proton spatial configurations in $p$+Pb collisions by covering parton momentum fractions from the valence region down to $x_p \sim 10^{-3}$ and $x_\mathrm{Pb}\sim 4\cdot10^{-4}$.
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$
Measurements of Higgs boson production, where the Higgs boson decays into a pair of $\tau$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $\tau$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 $\pm$ 0.11 for inclusive Higgs boson production, 0.67 $\pm$ 0.19 (0.81 $\pm$ 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 $\pm$ 0.45 for vector boson associated Higgs boson production.